

#### **Bioinformatics**

Application of mathematical and Computer Science methods to solve problems in Molecular Biology that require **large scale data** 



### **Databases in Bioinformatics (DBB)**

There are several data

- Of one (closed) project, only
- Which consist of the world wide and ongoing cooperation of teams of research
- Of a single organism
- About the existence of a protein in all possible organisms

| Questions to DBB                    |                                           |
|-------------------------------------|-------------------------------------------|
| DNA Analysis and Sequencing         | sequence DB                               |
| Determination of Phylogenetic Trees | sequence DB                               |
| Gene Expression Data Analysis       | $\rightarrow$ special DB                  |
| Determination of metabolical paths  | sequence DB                               |
|                                     | $\rightarrow$ special DB                  |
| Protein Structure Prediction        | Protein sequence and protein structure DB |
|                                     | 5/17                                      |

| Examples for DBB              |                      |  |
|-------------------------------|----------------------|--|
| Gen bank                      | www.ncbi.nlm.nih.gov |  |
| S NCBI                        | •www.ebi.ac.uk       |  |
|                               | www.ddbj.nig.ac.jp   |  |
| German Human<br>Genom Project |                      |  |
| ALL LAND                      | www.dhgp.de          |  |



| <b>D1 1</b>     |                                   |
|-----------------|-----------------------------------|
| Phylogeny       | • <u>www.ucmp.berkeley.edu</u>    |
|                 | /exhibit/phylogeny.html           |
|                 | <u>http://evolution.genetics.</u> |
|                 | washington.edu                    |
| V               | <u>http://tolweb.org/tree</u>     |
| ALLAN<br>WILSON | <u>http://awcmee.massey.ac</u>    |
| VCENIKE         | .nz                               |

### Characteristics of biological data

- Very complex → vou cannot describe all
  - $\rightarrow$  you cannot describe all aspects of data with traditional DBMS
- Amount and variability of data are very large
  → The types and values of data must be very flexible

# Characteristics of biological data

• Schemes in biological databases change very quickly

 $\rightarrow$  Systems of today at least once a year create a new database scheme

- The descriptions of the same data by several biologists often differ
- Most of the biologists don't know the inner structure of the data base

# Characteristics of biological data

- Definition and description of **complex queries** are important
  - $\rightarrow$  Tools for the formulation of queries must be provided
- User often need the Access to "old" values of data
  - $\rightarrow$  changes of values must be archived

### Conclusions

- Conventional DBMS don't meet all requirements of complex biological data
   → further developments of DBMS are necessary
- <u>GENOME</u> (Georgia Tech Emory Network Object Management Environment) is one of such developments (Emory is a university in Georgia)

#### **Models for DBB**

- Have common characteristics in relation to their data models and their management
- DBB use for example the following models (the percents refer to the DB that have been analyzed by Bry and Kröger)

# **Models for DBB**

| Model                               | Percent | Remarks                                                     |
|-------------------------------------|---------|-------------------------------------------------------------|
| Flat files                          | 40 %    | ASCII and GIF files,<br>unstructured                        |
| Relational                          | 30 %    | Common Model, for molecular biological data not so suitable |
| Object                              | 9 %     | structured data, suitable for data<br>of Molecular Biology  |
| ACEDB<br>(A C. elegans<br>Database) | 4 %     | Special model, representation of genetic data               |

## Queries

- Most DBB offer web forms to create queries, often there are only special types of queries
- Examples

SWISS-PROT – largest protein database BLAST – Basic Local Alignment Search Tool Entrez – Life Sciences Search Engine Tree of Life

# Literature

- Bry, F, Kröger, P.: A computational biology database digest: data, data analysis, and data management. Research Report PMS-FB-2002-8
- http://www.pms.informatik.unimuenchen.de/publikationen/#PMS-FB-2002-8
- Elmasri, R., Navathe, S. B.: Fundamentals of Database Systems. Pearson Education 2000
- http://www.sbc.su.se/~pjk/strbio2001/databases/index .html

#### Literature

A computational biology database digest: data, data analysis, and data management contains among other things:

- 124 references
- 111 analyzed DBB
- Table with URLs for methods of data analysis (Sequence Alignment, Gene Finding, Gene Expression)