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Abstract—Medical Visual Question Answering (Med-VQA)
combines computer vision (CV) and natural language processing
(NLP) to help make clinical decisions and medical education by
answering questions about medical images. However, developing
powerful Med-VQA models faces several issues, including the
complex nature of medical images, the availability of labeled data,
and dataset biases. This research examines two critical points
of Med-VQA: (1) multimodal fusion techniques for combining
visual and textual information, and (2) the effectiveness of
unbiased learning approaches using data augmentation and class
weighting methods. The paper evaluates three fusion approaches
(concatenation-based, attention-based, and bilinear attention net-
works) on two benchmark datasets: SLAKE and PathVQA.
Our experiments show that attention-based approaches perform
well, with an accuracy of 58.47% on PathVQA. The study
of unbiased learning techniques shows that the adopted class
weighting method does not improve Med-VQA performance as
expected, while using the image augmentation technique alone
outperforms combinations with the class weighting technique.

Index Terms—Medical Visual Question Answering, Multi-
modal Fusion, Unbiased Learning, Data Augmentation, Class
Weighting Methods

1. INTRODUCTION

Visual Question Answering (VQA) is a rapidly growing
field within artificial intelligence (Al) that integrates computer
vision (CV) and natural language processing (NLP) fields to
answer questions about images. A VQA model usually consists
of four processes, namely (i) visual feature extraction, where
the related features are extracted from the input image, (ii)
textual feature extraction from the question, (iii) Multimodal
fusion, where the extracted visual and textual representations
are integrated. (iv) Answer prediction, generating the final
output according to the integrated features. With the progress
of VQA research in the general domain, there has been an
increasing interest in adapting these techniques to the medical
domain, medical visual question answering (Med-VQA)
aims to aid in clinical decision-making, improve patient
engagement, and can be used as a medical education tool to
assist medical students in their studying [1]-[4]. However,
similar to the general VQA domain, developing a robust Med-
VQA model is challenging, which returns to the complex
nature of medical
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images, limited labeled data, and inherent biases in datasets
[5]-[8]- To address these challenges, this research focuses on
two key research areas and explores their impacts on the Med-
VQA model: (i) fusion techniques for multimodal integration
and (ii)) unbiased learning techniques such as data
augmentation and class weighting. Fusion methods play a
crucial role in Med-VQA by combining visual and textual
modalities, impacting the model’s ability to extract and align
relevant information from both modalities. Previous research
has examined various fusion techniques, but there is still no
agreement on the optimal approach for Med-VQA. In this
work, we investigate multiple fusion techniques, comparing
their performance on two benchmark datasets: SLAKE [9],
and PathVQA [10]. Medical datasets often show biases, where
certain question types, medical conditions, and imaging
methods are represented excessively. In addition to predicting
the answers, the process is often based on shallow correlations
between the questions and answers rather than including the
relationship between the images and questions [11], [12].
To address this, we explored data augmentation and class
weighting techniques that have shown an impressive impact
in reducing bias across other deep-learning applications [13],
[14]. However, our experiments show that these techniques
do not improve the Med-VQA performance across all tested
datasets as we expected. This suggests that these adopted
unbiased methods may not fit our Medical VQA model. Our
work makes several key contributions to the field of Medical
Visual Question Answering:

- We adopting an attention-based fusion approach that
bridges the semantic gap between medical images and
clinical questions by utilizing specialized visual and
textual feature encoders (DenseNet121 and BiomedVLP-
CXR-BERT).

- We perform a comprehensive comparative analysis of
three different fusion methods: concatenation-based,
attention-based, and bilinear attention networks—across
multiple Med-VQA datasets (SLAKE and PathVQA),
offering a deep overview of which approaches are most
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efficient for different medical imaging modalities and
question types.

- We comprehensively evaluate the impact of unbiased
learning techniques on Med-VQA performance, revealing
the unexpected result that class weighting methods do
not improve results when applied to medical datasets. At
the same time, image augmentation alone shows better
performance.

This paper is organized as follows. Section III provides an
overview of the proposed Med-VQA framework. Section IV
explains the experiments and displays the evaluation of the
experiments, and finally, the paper is concluded in Section
VL

II. RELATED WORK

Recent research in Med-VQA has examined different
approaches to integrating visual and textual representations
and developed techniques to handle bias challenges. To
overcome the data limitation of medical VQA, Nguyen et al.
[5] proposed a framework that explores the use of the
unsupervised Denoising Auto-Encoder (DAE) and the
supervised Meta-Learning (MAML). However, their focus
was only on the data limitation in the aspect of medical images
while ignoring the impact of textual representation.
MedFuseNet [15] is an attention-based multimodal model
that aims to learn representations by an optimal fusion of
the multimodal inputs using the attention mechanism by
focusing on the most related part of the medical images
and questions. The multi-modal representation of image and
question are passed through an LSTM decoder. Van
Sonsbeek et al. [16] shift away from classification-based
methods to open-ended generative answers. They map the
extracted visual features to a set of learnable tokens serving as
a visual prefix for the language model. Then, along with
the question, these visual prefixes are passed directly to the
language model to generate the answer token by token. Chen et
al. [8] focused on critical information interaction within each
modality and relevant information interaction between
modalities. They proposed a Symmetric Interaction
Attention Module (SInAM) to construct dense and deep intra-
and inter-modal information interaction in medical images
and clinical questions. SInAM consists of multiple symmetric
interaction attention blocks that contain two basic units: self-
attention and interaction attention, where self-attention is
utilized in the intra-modal information interaction, and
interaction attention for inter-modal information interaction.
Our research is inspired by these studies. While previous works
have studied different fusion methods and debiasing
techniques separately, we evaluate both parts across two
benchmark datasets (SLAKE and PathVQA).

III. METHODOLOGY

Given an input image I and a natural language question Q,
the medical VQA task aims to predict an accurate answer a.
Formally, we define this as:

a= argmaxP(alL, Q) Q)
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Fig. 1. Model structure.

where P(a| I, Q) represents the probability that answer a is
correct given I and Q as input. The overall architecture of
our baseline model is shown in Figure 1, which consists of
four modules: (i) the image encoder that encodes medical
images to obtain visual features, in our work, we employ
the Densenetl21 [17] architecture pre-trained on ImageNet as
the backbone for the image encoder; the DenseNet parameters
are frozen during training to prevent overfitting. (ii) Question
encoder, responsible for producing textual embeddings; here,
we employ BiomedVLP-CXR-BERT [18]. The process begins
with tokenization, where the input question text is tokenized
and padded to regulate input lengths. Then the BERT model
processes the tokenized questions to generate textual
representations. Textual representations are used twice in our
model. They are first used in the attention mechanism in
guiding the model in focusing on the relevant image
regions, and they are directly concatenated with the
attended 1image features to create the multimodal
representation, as seen in Figure 2.

(iii) The cross-modal feature fusion module that aligns and
combines visual and textual representations. For this module,
we adopted the attention mechanism (a question-guided
attention mechanism) that creates the interactions between
the image and text features. This attention module calculates
attention weights to focus on related image features according
to the question content. The attended image features are then
concatenated with text features and passed through a sequence
of fully connected layers with normalization, ReLUs, and
dropout for regularization. In more detail, the process begins
with projecting the textual and visual features into the shared
dimension:

V=W,V+b, T =WT+b 2)

where: V is the visual features extracted from the Den-
snetl21 W, and Wk are learnable weight matrices that project
the visual and textual features into the shared embedding space
of dimension d. by and bt represent the bias. T is the textual
features extracted from Bert.

Then the attention weights o are computed according to the
following formula:

A = Wat tanh(T' + V') 3)

o = softmax(A) 4

where Wa 1s a learnable attention matrix



The attended visual features Vit are computed as:
Vaee = 2(o; V) (5)
Finally, the attended visual features are combined with the textual
embeddings to form a joint representation. Figure 2 illustrates the
architecture of the model developed using this method in fusing
the extracted visual and textual features.
(iv)The classification module receives the fused multimodal
features, where this concatenated representation goes through
several transformations to predict the final answer. First, the
fused features are projected through a fully connected layer to a
lower-dimensional space(N):

fc=Wf +5»b 6)
where W € RV(av+dd) s the weight matrix and f is the fused

features. b € RY represents the bias. Then the projected features

are passed through a ReLU activation function to introduce
non-linearity:

u = ReLU(fc) = max(0, fc) @)

A dropout layer with probability p=0.5 is applied during training
to prevent overfitting:

z = Dropout(u,p = 0.5) ®)

Finally, the model makes use of a classification layer to map the
features to answer probabilities:

y' =softmax(W,z+b,) ©)]

Where W, € ReX Nis the classification weight matrix, be € Re
is the bias term, and c is the number of answer classes. During
training, the model minimizes the cross-entropy loss between
predicted probabilities y’ and ground truth answers y:

L=-%,y;log(y)) (10)

IV. EXPERIMENTS AND RESULTS

We use SLAKE [9], and PathVQA [10] in our experiments.
SLAKE is an English-Chinese bilingual dataset containing
642 images and 14,028 question-answer pairs. This dataset
includes 12 diseases and 39 organs of the whole body. In our
work, we use the English subset of the SLAKE dataset.

The PathVQA dataset consists of 32,799 question-answer
pairs generated from 4,998 pathology images collected from
two pathology textbooks and the PEIR digital library. The
questions in the dataset are divided into open-ended and
closed-ended (yes/no) questions. Each one of these two
datasets shows a different kind of challenge, represented by
imbalanced question types and limited training samples,
making them ideal for testing the fusion strategies and
unbiased learning techniques. These two datasets provide a
comprehensive view within their domains but represent a
subset of medical imaging modalities and clinical techniques
used in practice. In this work, we define the Med-VQA task as
a multiclass classification problem, and to evaluate the
models, we adopt accuracy to analyze the exact matches of
predictions.

For a more comprehensive understanding of the efficiency in
combining visual and textual modalities, we analyze three fusion
techniques: Concatenation-based, Attention-based, and Bi-
linear attention network. The first method, the Concatenation-based
method, simply concatenates the feature vectors of text and
image along the feature dimension. Attention-based fusion employs
an additive attention mechanism to allow our model to focus on
relevant image regions based on the question content. It computes
attention weights that emphasize important visual features according
to the textual query. The attended visual features are then
concatenated with textual features to form a joint representation, as
described in detail in Section 3. Bilinear Attention Networks (BAN)
[19] extend traditional co-attention mechanisms to bilinear
attention. Rather than relying on finding separate attention
distributions for each modality, BANs examine every possible pair
of interactions between visual and textual features through bilinear
attention maps. The technique employs low-rank bilinear pooling to
compute these interactions. The second key point is unbiased
learning techniques: we investigate whether the adopted unbiased
strategies (image augmentation and class weighting) improve Med-
VQA performance. The techniques adopted are described below.

The first technique is the class weight; in this research, we
adopt the Fernando and Tsokos [14] method to find the class
weight and study its impact on the performance of the model.
The weighting follows a logarithmic formula based on class
frequencies, where classes with fewer instances receive higher
weights.

(11

w; = log (maX(n:J'l € C)) 41

13

where: wi is the weight for class i, n;is the frequency of
class I, and max(ni|i € ) represents the class frequency of
the majority class, and c is the set of classes.

Data Augmentation is adopted as the second technique;
the augmentation pipeline includes resizing, random rotation,
horizontal flipping, and colour jittering. These augmentations
are applied only during training. All models are implemented
in PyTorch and trained using the Adam optimizer with a
learning rate of le-4 and a batch size of 16. We fine-tune each
model for 25 epochs, and all computations are performed on
an NVIDIA GeForce RTX 4090 GPU.

V. RESULTS AND DISCUSSION

From Table 1 and Figure 3, our model (which uses the
attention-based fusion method illustrated in Figure 2) achieves
an overall accuracy of 78.98% on the SLAKE dataset, which
came in second place compared with the state-of-the-art
models, and 58.47% on the PathVQA dataset, which out-
performs the other models, particularly the performance on
close-ended questions reaching 88.28% accuracy. Our model
shows an impressive performance in closed-ended questions
for the PathVQA dataset, but shows a performance gap within
open-ended questions, where the accuracy is 28.62%. This
difference shows a challenge that faces the Med-VQA models
in general, which is the difficulty in generating the exact match
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Fig. 2. Developed model architecture utilizing the question-guided attention mechanism.

Of free-form answers. Additionally, closed-ended questions
require binary classification (yes/no), which can be a simpler
task compared to open-ended questions, which require the
precise generation of exact medical terms, anatomical
structures, or pathological findings from a large vocabulary
space. Further, pathology images contain complex visual
features requiring specialized domain knowledge to analyze
correctly [20]. When compared to state-of-the-art models like
BiomedGPT-M (which achieves 78.3% on open-ended
SLAKE questions) and Van Sonsbeek et al.’s approach (with
87.00% on closed-ended PathVQA questions), our developed
model shows competitive performance.

Table II illustrates the impact of unbiased learning
techniques on the three fusion methods for Med-VQA:
Starting with the effects of not applying any of the adopted
unbiased learning techniques, for the Slake dataset, the
Attention-Based Fusion method performs best for open-ended
questions and closed-ended ones at 77.19% and 82.53%
respectively. The concatenation-based method performs better
on closed-ended questions than open-ended questions. At the
same time, BAN notably performs worse, especially on
open-ended questions, with an accuracy of 49.00%. For the
PathVQA Dataset, Attention-Based Fusion performs best with
an overall accuracy equal to 58.47%, 28.62%, and 88.28% for
open-ended questions and closed-ended  questions,
respectively. BAN performs poorly, especially on open-ended
questions (9.94%). The results show that the first two fusion
methods outperform the BAN method. This may be related to
many factors, such as the limited size of the two datasets and
the fact that the BAN method requires more data to learn
cross-modal interactions effectively. Also, the other fusion
methods can be considered less complex than BAN, which
means they have fewer parameters and thus show better
performance with limited medical datasets. Using image
augmentation without a class weighting technique, the
overall accuracy for both

concatenation-based and Attention-Based Fusion methods is
quite similar on the Slake dataset: 77.37%. The attention-
based fusion method shows a slight improvement in the open-
ended questions type compared with the concatenation-based
method. The best accuracy for the PathVQA dataset is 58.32%
using the Attention-Based Fusion method. The BAN
continues to underperform, with 56.92% accuracy on SLAKE
and 48.47% on the PathVQA dataset. The class weighting
method (logarithmic) with image augmentation shows a drop
in performance compared to adopting only the image
augmentation technique. For the Slake dataset, the overall
accuracy for both concatenation-based and Attention-Based
Fusion methods are the same and equal to 75.68%, but this
time the concatenation-based method’s performance within the
open-ended questions is slightly better than the performance of
the Attention-Based Fusion method. For the PathVQA dataset,
the results show that using the Attention-Based Fusion method
outperforms the other two methods with an accuracy of
57.82%. Removing image augmentation while keeping the
class weighting method shows a few different results, but
continues the overall negative impact on performance.

The most remarkable finding is the symmetric pattern across
both datasets, where adopting the image augmentation
technique alone outperforms combinations with a class
weighting method. While the research study addresses class
imbalance through weighting techniques, we acknowledge
that medical VQA datasets contain other important bias types
beyond our current coverage. Different kinds of bias exist in
the medical field, which could all impact performance [21]-
[23], such as depending on the specific contexts of the dataset
rather than the image-question correlations. Also, some
models show bias toward certain imaging types. Our finding
that class weighting did not enhance performance indicates
that other bias types might have greater impacts in medical
VQA. Future work should explore techniques specifically
designed to address



TABLE I. Results on SLAKE and PathVQA datasets. Our model outperforms all previous models for the PathVQA dataset and came in second place for the
SLAKE dataset (represented in red). While blue represents the best-performing medical model in each dataset. The symbol (-) indicates that the results

were not reported in the original papers.

Model SLAKE Dataset PathVQA Dataset
ode Open-End Close-End Acc Open-End Close-End Acc
MedFuseNet [15] - - - - 63.6%
Van Sonsbeek et al. [16] - 82.01% - - 87.00% -
BiomedGPT-M [28] 78.3% 86.80% - 12.5% 85.7% -
Chen et al. [8] - - - 13.9% 83.4% -
Our Model 77.19% 82.53% 78.98% 28.62% 88.28% 58.47%
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Fig. 3. Results on SLAKE and PathVQA datasets.
these additional biases. Additionally, the results show the In particular, image augmentation alone outperforms

impact of adopting the Attention-Based fusion method.

A. Ablation study

We conduct an ablation study to analyze the impact of
different text encoders on Med-VQA’s performance. The
experiments are performed on the VQA-SLAKE dataset, and
the results are reported in Table III. Specifically, we replaced
Biomedvlp-CXR-BERT with two different textual encoders,
namely TS5 [24] and BioT5 [25], while maintaining our
baseline model architecture. Table III presents the results,
highlighting how different pre-trained language models affect
model size and accuracy across the SLAKE dataset. Our
experiments reveal that BioT5 performs better than T3,
suggesting that its pre-training on textual data from the
biological domain and the BioT5 size provides helpful domain
knowledge for Med-VQA tasks.

VI. CONCLUSION AND FUTURE WORK

We have evaluated fusion methods and unbiased
learning techniques in the context of Medical Visual Question
Answering. The study revealed several key findings: First,
simpler fusion methods (concatenation-based and attention-
based fusion) outperform the more complex BAN across both
SLAKE and PathVQA datasets. The attention-based fusion
method achieved the highest overall accuracy of 58.47% on
PathVQA and 78.98% on SLAKE. Through our analysis, we
find that more complex fusion mechanisms, such as BAN,
may not be necessary or effective for Med-VQA tasks with
limited training data sizes. Second, the study of using unbiased
learning techniques reveals that the adopted class weighting
methods do not enhance Med-VQA performance as expected.

combinations with the class-weighting method. Although
SLAKE and PathVQA provide practical frameworks for our
experiments, we acknowledge their limitations in representing
the full coverage of medical imaging modalities (e.g.,
ultrasound, PET scans). This may impact the generalizability
of our findings across the wider medical domain. While the
study offers valuable insights into fusion methods and
unbiased learning for Med-VQA, there are still several
valuable directions to be explored in future research: (1)
developing specialized debiasing methods specifically
designed for medical datasets rather than adapting general-
purpose techniques and (2) investigating the integration of
large language models (LLMs) pre-trained on medical
datasets to better understand medical textual data, particularly
for improving performance on open- ended questions. (3)
evaluating model performance across a wider range of
imaging modalities and anatomical regions by including
further datasets such as P-VQA [26], OVQA [27].
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