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Abstract—Medical Visual Question Answering (Med-VQA) 
combines computer vision (CV) and natural language processing 
(NLP) to help make clinical decisions and medical education by 
answering questions about medical images. However, developing 
powerful Med-VQA models faces several issues, including the 
complex nature of medical images, the availability of labeled data, 
and dataset biases. This research examines two critical points 
of Med-VQA: (1) multimodal fusion techniques for combining 
visual and textual information, and (2) the effectiveness of 
unbiased learning approaches using data augmentation and class 
weighting methods. The paper evaluates three fusion approaches 
(concatenation-based, attention-based, and bilinear attention net- 
works) on two benchmark datasets: SLAKE and PathVQA. 
Our experiments show that attention-based approaches perform 
well, with an accuracy of 58.47% on PathVQA. The study 
of unbiased learning techniques shows that the adopted class 
weighting method does not improve Med-VQA performance as 
expected, while using the image augmentation technique alone 
outperforms combinations with the class weighting technique. 

Index Terms—Medical Visual Question Answering, Multi- 
modal Fusion, Unbiased Learning, Data Augmentation, Class 
Weighting Methods 

 

I. INTRODUCTION 

Visual Question Answering (VQA) is a rapidly growing 

field within artificial intelligence (AI) that integrates computer 

vision (CV) and natural language processing (NLP) fields to 

answer questions about images. A VQA model usually consists 

of four processes, namely (i) visual feature extraction, where 

the related features are extracted from the input image, (ii) 

textual feature extraction from the question, (iii) Multimodal 

fusion, where the extracted visual and textual representations 

are integrated. (iv) Answer prediction, generating the final 

output according to the integrated features. With the progress 

of VQA research in the general domain, there has been an 

increasing interest in adapting these techniques to the medical 

domain, medical visual question answering (Med-VQA) 

aims to aid in clinical decision-making, improve patient 

engagement, and can be used as a medical education tool to 

assist medical students in their studying [1]–[4]. However, 

similar to the general VQA domain, developing a robust Med-

VQA model is challenging, which returns to the complex 

nature of medical 

images, limited labeled data, and inherent biases in datasets 

[5]-[8]. To address these challenges, this research focuses on 

two key research areas and explores their impacts on the Med-

VQA model: (i) fusion techniques for multimodal integration 

and (ii) unbiased learning techniques such as data 

augmentation and class weighting. Fusion methods play a 

crucial role in Med-VQA by combining visual and textual 

modalities, impacting the model’s ability to extract and align 

relevant information from both modalities. Previous research 

has examined various fusion techniques, but there is still no 

agreement on the optimal approach for Med-VQA. In this 

work, we investigate multiple fusion techniques, comparing 

their performance on two benchmark datasets: SLAKE [9], 

and PathVQA [10]. Medical datasets often show biases, where 

certain question types, medical conditions, and imaging 

methods are represented excessively. In addition to predicting 

the answers, the process is often based on shallow correlations 

between the questions and answers rather than including the 

relationship between the images and questions [11], [12]. 

To address this, we explored data augmentation and class 

weighting techniques that have shown an impressive impact 

in reducing bias across other deep-learning applications [13], 

[14]. However, our experiments show that these techniques 

do not improve the Med-VQA performance across all tested 

datasets as we expected. This suggests that these adopted 

unbiased methods may not fit our Medical VQA model. Our 

work makes several key contributions to the field of Medical 

Visual Question Answering: 

 

• We adopting an attention-based fusion approach that 

bridges the semantic gap between medical images and 

clinical questions by utilizing specialized visual and 

textual feature encoders (DenseNet121 and BiomedVLP- 

CXR-BERT). 

• We perform a comprehensive comparative analysis of 

three different fusion methods: concatenation-based, 

attention-based, and bilinear attention networks—across 

multiple Med-VQA datasets (SLAKE and PathVQA), 

offering a deep overview of which approaches are most 
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efficient for different medical imaging modalities and 

question types. 

• We comprehensively evaluate the impact of unbiased 

learning techniques on Med-VQA performance, revealing 

the unexpected result that class weighting methods do 

not improve results when applied to medical datasets. At 

the same time, image augmentation alone shows better 

performance. 

This paper is organized as follows. Section III provides an 

overview of the proposed Med-VQA framework. Section IV 

explains the experiments and displays the evaluation of the 

experiments, and finally, the paper is concluded in Section 

VI. 

II. RELATED WORK 

Recent research in Med-VQA has examined different 

approaches to integrating visual and textual representations 

and developed techniques to handle bias challenges. To 

overcome the data limitation of medical VQA, Nguyen et al. 

[5] proposed a framework that explores the use of the 

unsupervised Denoising Auto-Encoder (DAE) and the 

supervised Meta-Learning (MAML). However, their focus 

was only on the data limitation in the aspect of medical images 

while ignoring the impact of textual representation. 

MedFuseNet [15] is an attention-based multimodal model 

that aims to learn representations by an optimal fusion of 

the multimodal inputs using the attention mechanism by 

focusing on the most related part of the medical images 

and questions. The multi-modal representation of image and 

question are passed through an LSTM decoder. Van 

Sonsbeek et al. [16] shift away from classification-based 

methods to open-ended generative answers. They map the 

extracted visual features to a set of learnable tokens serving as 

a visual prefix for the language model. Then, along with 

the question, these visual prefixes are passed directly to the 

language model to generate the answer token by token. Chen et 

al. [8] focused on critical information interaction within each 

modality and relevant information interaction between 

modalities. They proposed a Symmetric Interaction 

Attention Module (SInAM) to construct dense and deep intra- 

and inter-modal information interaction in medical images 

and clinical questions. SInAM consists of multiple symmetric 

interaction attention blocks that contain two basic units: self-

attention and interaction attention, where self-attention is 

utilized in the intra-modal information interaction, and 

interaction attention for inter-modal information interaction. 

Our research is inspired by these studies. While previous works 

have studied different fusion methods and debiasing 

techniques separately, we evaluate both parts across two 

benchmark datasets (SLAKE and PathVQA). 

III. METHODOLOGY 

Given an input image I and a natural language question Q, 

the medical VQA task aims to predict an accurate answer a. 

Formally, we define this as: 

a = argmaxP (a|I, Q) (1) 
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Fig. 1. Model structure. 

 

where P(a| I, Q) represents the probability that answer a is 

correct given I and Q as input. The overall architecture of 
our baseline model is shown in Figure 1, which consists of 

four modules: (i) the image encoder that encodes medical 

images to obtain visual features, in our work, we employ 

the Densenet121 [17] architecture pre-trained on ImageNet as 

the backbone for the image encoder; the DenseNet parameters 

are frozen during training to prevent overfitting. (ii) Question 

encoder, responsible for producing textual embeddings; here, 

we employ BiomedVLP-CXR-BERT [18]. The process begins 

with tokenization, where the input question text is tokenized 

and padded to regulate input lengths. Then the BERT model 

processes the tokenized questions to generate textual 

representations. Textual representations are used twice in our 

model. They are first used in the attention mechanism in 

guiding the model in focusing on the relevant image 

regions, and they are directly concatenated with the 

attended image features to create the multimodal 

representation, as seen in Figure 2. 

(iii) The cross-modal feature fusion module that aligns and 

combines visual and textual representations. For this module, 

we adopted the attention mechanism (a question-guided 

attention mechanism) that creates the interactions between 

the image and text features. This attention module calculates 

attention weights to focus on related image features according 

to the question content. The attended image features are then 

concatenated with text features and passed through a sequence 

of fully connected layers with normalization, ReLUs, and 

dropout for regularization. In more detail, the process begins 

with projecting the textual and visual features into the shared 

dimension: 

 

V ′ = WvV + bv, T ′ = WtT + bt (2) 

where: V is the visual features extracted from the Den- 

snet121 Wv and Wt are learnable weight matrices that project 

the visual and textual features into the shared embedding space 

of dimension d. bv and bt represent the bias. T is the textual 

features extracted from Bert. 

Then the attention weights  are computed according to the 

following formula: 

A = Watt tanh(T′ + V ′ ) (3) 

 

  = softmax(A) (4) 

where Watt is a learnable attention matrix 

    

 

 

 

 

 

   

 

 

 
  



 

The attended visual features Vatt are computed as: 

𝑉𝑎𝑡𝑡 = ∑(α𝑖𝑉𝑖)                                                                (5) 

      For a more comprehensive understanding of the efficiency in 
combining visual and textual modalities, we analyze three fusion 

techniques: Concatenation-based, Attention-based, and Bi- 

Finally, the attended visual features are combined with the textual 

embeddings to form a joint representation. Figure 2 illustrates the 

architecture of the model developed using this method in fusing 

the extracted visual and textual features. 

(iv)The classification module receives the fused multimodal 

features, where this concatenated representation goes through 
several transformations to predict the final answer. First, the 

fused features are projected through a fully connected layer to a 

lower-dimensional space(N): 

               𝑓𝑐 =  𝑊𝑓 +  𝑏                       (6) 

where W ∈ RN×(dv +dt) is the weight matrix and f is the fused 

features. b ∈ RN represents the bias. Then the projected features 

are passed through a ReLU activation function to introduce 

non-linearity: 

                        𝑢 = 𝑅𝑒𝐿𝑈(𝑓𝑐) = 𝑚𝑎𝑥(0, 𝑓𝑐)                   (7) 

A dropout layer with probability p=0.5 is applied during training 

to prevent overfitting: 

                        𝑧 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑢, 𝑝 = 0.5)                       (8) 

Finally, the model makes use of a classification layer to map the 

features to answer probabilities: 

                    𝑦′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑧 + 𝑏𝑐)                            (9) 

Where Wc ∈ Rc×N is the classification weight matrix, bc ∈ Rc 

linear attention network. The first method, the Concatenation-based 

method, simply concatenates the feature vectors of text and 

image along the feature dimension. Attention-based fusion employs 

an additive attention mechanism to allow our model to focus on 

relevant image regions based on the question content. It computes 

attention weights that emphasize important visual features according 

to the textual query. The attended visual features are then 

concatenated with textual features to form a joint representation, as 

described in detail in Section 3. Bilinear Attention Networks (BAN) 

[19] extend traditional co-attention mechanisms to bilinear 
attention. Rather than relying on finding separate attention 

distributions for each modality, BANs examine every possible pair 

of interactions between visual and textual features through bilinear 

attention maps. The technique employs low-rank bilinear pooling to 

compute these interactions. The second key point is unbiased 

learning techniques: we investigate whether the adopted unbiased 

strategies (image augmentation and class weighting) improve Med-

VQA performance. The techniques adopted are described below. 

 

The first technique is the class weight; in this research, we 

adopt the Fernando and Tsokos [14] method to find the class 

weight and study its impact on the performance of the model. 

The weighting follows a logarithmic formula based on class 

frequencies, where classes with fewer instances receive higher 

weights. 

                      𝑤𝑖 = log (
max(𝑛𝑖|𝑖 ∈ 𝑐)

𝑛𝑖
) + 1                         (11) 

is the bias term, and c is the number of answer classes. During 

training, the model minimizes the cross-entropy loss between 

predicted probabilities y’ and ground truth answers y: 

          𝐿 = − ∑ 𝑦𝑖𝑖 log(𝑦𝑖
′)                                                (10)                                                 

    

IV. EXPERIMENTS AND RESULTS 

We use SLAKE [9], and PathVQA [10] in our experiments. 

SLAKE is an English-Chinese bilingual dataset containing 

642 images and 14,028 question-answer pairs. This dataset 

includes 12 diseases and 39 organs of the whole body. In our 

work, we use the English subset of the SLAKE dataset. 

The PathVQA dataset consists of 32,799 question-answer 

pairs generated from 4,998 pathology images collected from 

two pathology textbooks and the PEIR digital library. The 

questions in the dataset are divided into open-ended and 

closed-ended (yes/no) questions. Each one of these two 

datasets shows a different kind of challenge, represented by 

imbalanced question types and limited training samples, 

making them ideal for testing the fusion strategies and 

unbiased learning techniques. These two datasets provide a 

comprehensive view within their domains but represent a 

subset of medical imaging modalities and clinical techniques 

used in practice. In this work, we define the Med-VQA task as 

a multiclass classification problem, and to evaluate the 

models, we adopt accuracy to analyze the exact matches of 

predictions. 

where: wi is the weight for class i, ni is the frequency of 

class I, and max(ni|i ∈ c) represents the class frequency of 

the majority class, and c is the set of classes. 

Data Augmentation is adopted as the second technique; 

the augmentation pipeline includes resizing, random rotation, 

horizontal flipping, and colour jittering. These augmentations 

are applied only during training. All models are implemented 

in PyTorch and trained using the Adam optimizer with a 

learning rate of 1e-4 and a batch size of 16. We fine-tune each 

model for 25 epochs, and all computations are performed on 

an NVIDIA GeForce RTX 4090 GPU. 

V. RESULTS AND DISCUSSION 

From Table I and Figure 3, our model (which uses the 

attention-based fusion method illustrated in Figure 2) achieves 

an overall accuracy of 78.98% on the SLAKE dataset, which 

came in second place compared with the state-of-the-art 

models, and 58.47% on the PathVQA dataset, which out- 

performs the other models, particularly the performance on 

close-ended questions reaching 88.28% accuracy. Our model 

shows an impressive performance in closed-ended questions 

for the PathVQA dataset, but shows a performance gap within 

open-ended questions, where the accuracy is 28.62%. This 

difference shows a challenge that faces the Med-VQA models 

in general, which is the difficulty in generating the exact match 
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Fig. 2. Developed model architecture utilizing the question-guided attention mechanism. 

 

Of free-form answers. Additionally, closed-ended questions 

require binary classification (yes/no), which can be a simpler 

task compared to open-ended questions, which require the 

precise generation of exact medical terms, anatomical 

structures, or pathological findings from a large vocabulary 

space. Further, pathology images contain complex visual 

features requiring specialized domain knowledge to analyze 

correctly [20]. When compared to state-of-the-art models like 

BiomedGPT-M (which achieves 78.3% on open-ended 

SLAKE questions) and Van Sonsbeek et al.’s approach (with 

87.00% on closed-ended PathVQA questions), our developed 

model shows competitive performance. 

Table II illustrates the impact of unbiased learning 

techniques on the three fusion methods for Med-VQA: 

Starting with the effects of not applying any of the adopted 

unbiased learning techniques, for the Slake dataset, the 

Attention-Based Fusion method performs best for open-ended 

questions and closed-ended ones at 77.19% and 82.53% 

respectively. The concatenation-based method performs better 

on closed-ended questions than open-ended questions. At the 

same time, BAN notably performs worse, especially on 

open-ended questions, with an accuracy of 49.00%. For the 

PathVQA Dataset, Attention-Based Fusion performs best with 

an overall accuracy equal to 58.47%, 28.62%, and 88.28% for 

open-ended questions and closed-ended questions, 

respectively. BAN performs poorly, especially on open-ended 

questions (9.94%). The results show that the first two fusion 

methods outperform the BAN method. This may be related to 

many factors, such as the limited size of the two datasets and 

the fact that the BAN method requires more data to learn 

cross-modal interactions effectively. Also, the other fusion 

methods can be considered less complex than BAN, which 

means they have fewer parameters and thus show better 

performance with limited medical datasets. Using image 

augmentation without a class weighting technique, the 

overall accuracy for both 

concatenation-based and Attention-Based Fusion methods is 

quite similar on the Slake dataset: 77.37%. The attention-

based fusion method shows a slight improvement in the open-

ended questions type compared with the concatenation-based 

method. The best accuracy for the PathVQA dataset is 58.32% 

using the Attention-Based Fusion method. The BAN 

continues to underperform, with 56.92% accuracy on SLAKE 

and 48.47% on the PathVQA dataset. The class weighting 

method (logarithmic) with image augmentation shows a drop 

in performance compared to adopting only the image 

augmentation technique. For the Slake dataset, the overall 

accuracy for both concatenation-based and Attention-Based 

Fusion methods are the same and equal to 75.68%, but this 

time the concatenation-based method’s performance within the 

open-ended questions is slightly better than the performance of 

the Attention-Based Fusion method. For the PathVQA dataset, 

the results show that using the Attention-Based Fusion method 

outperforms the other two methods with an accuracy of 

57.82%. Removing image augmentation while keeping the 

class weighting method shows a few different results, but 

continues the overall negative impact on performance. 

The most remarkable finding is the symmetric pattern across 

both datasets, where adopting the image augmentation 

technique alone outperforms combinations with a class 

weighting method. While the research study addresses class 

imbalance through weighting techniques, we acknowledge 

that medical VQA datasets contain other important bias types 

beyond our current coverage. Different kinds of bias exist in 

the medical field, which could all impact performance [21]–

[23], such as depending on the specific contexts of the dataset 

rather than the image-question correlations. Also, some 

models show bias toward certain imaging types. Our finding 

that class weighting did not enhance performance indicates 

that other bias types might have greater impacts in medical 

VQA. Future work should explore techniques specifically 

designed to address 

      



TABLE I. Results on SLAKE and PathVQA datasets. Our model outperforms all previous models for the PathVQA dataset and came in second place for the 

SLAKE dataset (represented in red). While blue represents the best-performing medical model in each dataset. The symbol (-) indicates that the results 

were not reported in the original papers. 
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Fig. 3. Results on SLAKE and PathVQA datasets. 

 

these additional biases. Additionally, the results show the 

impact of adopting the Attention-Based fusion method. 

A. Ablation study 

We conduct an ablation study to analyze the impact of 

different text encoders on Med-VQA’s performance. The 

experiments are performed on the VQA-SLAKE dataset, and 

the results are reported in Table III. Specifically, we replaced 

Biomedvlp-CXR-BERT with two different textual encoders, 

namely T5 [24] and BioT5 [25], while maintaining our 

baseline model architecture. Table III presents the results, 

highlighting how different pre-trained language models affect 

model size and accuracy across the SLAKE dataset. Our 

experiments reveal that BioT5 performs better than T5, 

suggesting that its pre-training on textual data from the 

biological domain and the BioT5 size provides helpful domain 

knowledge for Med-VQA tasks. 

VI. CONCLUSION AND FUTURE WORK 

We have evaluated fusion methods and unbiased 

learning techniques in the context of Medical Visual Question 

Answering. The study revealed several key findings: First, 

simpler fusion methods (concatenation-based and attention-

based fusion) outperform the more complex BAN across both 

SLAKE and PathVQA datasets. The attention-based fusion 

method achieved the highest overall accuracy of 58.47% on 

PathVQA and 78.98% on SLAKE. Through our analysis, we 

find that more complex fusion mechanisms, such as BAN, 

may not be necessary or effective for Med-VQA tasks with 

limited training data sizes. Second, the study of using unbiased 

learning techniques reveals that the adopted class weighting 

methods do not enhance Med-VQA performance as expected. 

In particular, image augmentation alone outperforms 

combinations with the class-weighting method. Although 

SLAKE and PathVQA provide practical frameworks for our 

experiments, we acknowledge their limitations in representing 

the full coverage of medical imaging modalities (e.g., 

ultrasound, PET scans). This may impact the generalizability 

of our findings across the wider medical domain. While the 

study offers valuable insights into fusion methods and 

unbiased learning for Med-VQA, there are still several 

valuable directions to be explored in future research: (1) 

developing specialized debiasing methods specifically 

designed for medical datasets rather than adapting general-

purpose techniques and (2) investigating the integration of 

large language models (LLMs) pre-trained on medical 

datasets to better understand medical textual data, particularly 

for improving performance on open- ended questions. (3) 

evaluating model performance across a wider range of 

imaging modalities and anatomical regions by including 

further datasets such as P-VQA [26], OVQA [27]. 
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Fusion Method 
 PathVQA Dataset 

Open-End Close-End Acc Open-End Close-End Acc 

 

Text Encoder Open-End Close-End Acc Model 

T5 70.01% 66.19% 68.73% 167 

BioT5 71.85% 69.01 % 70.97% 460 

Biomedvlp-CXR-BERT 77.19 % 82.53 % 78.98 % 455 

 


