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Abstract. Intrinsic image decomposition enables us to estimate the low-level
features of images. Due to the benefits it provides and the challenges it holds,
intrinsic image decomposition has been extensively studied over more than five
decades. It can be utilized in various computer vision and computer graphics
pipelines to improve the efficiency of tasks such as object classification and re-
coloring, and image segmentation. In this study, we introduce an algorithm for
reflectance and shading estimation, offering a simple yet effective solution to
the ill-posed intrinsic image decomposition problem. Our learning-free method
leverages a combination of the fundamentals of the Retinex theory, scale-space
computations, and superpixel segmentation. The assumptions of the Retinex the-
ory enable us to provide a straightforward solution to a complex problem, while
scale-space computations allow us to highlight low-level features and superpixel
segmentation helps us to preserve local information. We evaluated our algorithm
that mainly focuses on single objects on three benchmarks, namely, MIT Intrinsic
Images, Bonneel, and MPI Sintel, which either consist of single objects or com-
plex scenes having different characteristics. According to our experiments, our
algorithm provides competitive results compared to the other methods.

Keywords: Intrinsic image decomposition · Reflectance estimation · Shading es-
timation.

1 Introduction

The human visual system estimates the true colors of the objects unconsciously by dis-
counting the effects of the light source present in the environment [21]. However, ma-
chine vision systems have difficulty performing this task effectively due to the presence
of occlusion, reflections, glare effect, and over- and under-saturated regions [42,45]. To
assist machine vision systems and increase their performance in numerous applications,
we can benefit from the field of intrinsic image decomposition (IID) [3]. The main aim
of intrinsic image decomposition is to recover a scene’s low-level features such as re-
flectance, and shading, which are also referred to as "family of intrinsics" [3]. While

1 This is the pre-print version of the manuscript accepted at the Computational Color Imaging
Workshop (CCIW 2024)
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reflectance carries information about the actual color of the objects irrespective of the
scene’s lighting conditions and the position of the capturing device, the shading compo-
nent includes features related to the illumination, shadows, and geometry of the scene.
Hence, each family member contains distinct characteristics that carry cues about the
input scene which might not be directly observable in a single scene. Therefore, us-
ing intrinsics rather than the input image itself can benefit both high- and low-level
computer vision tasks, including but not limited to object recoloring [8], surface re-
texturing [48], exposure correction [52], and object classification [5].

Intrinsic image decomposition is framed as a computational challenge, since the
problem is severely under-constraint, i.e., we only have a single input image but mul-
tiple unknown intrinsics. Due to this reason, studies in this field generally relax the
ill-posed nature of the problem by assuming that any scene can be represented using
the Lambertian image formation model. The under-constraint nature of the problem
is further relaxed by assuming that the sensor responses of the capturing device are
narrow-band, and there is a point light source illuminating the scene uniformly. Conse-
quently, any input scene I at the spatial location (x,y) can be formulated as follows:

I(x,y) = R(x,y) · S(x,y), (1)
where R is the reflectance that represents the ratio between the total reflected and total
incident illumination, and S is the shading that presents the interaction between the
illumination and the surface [3].

Even though these relaxations simplify the intrinsic image decomposition problem,
it is still quite challenging to estimate the reflectance and shading of a scene. There-
fore, this field has gained significant attention over more than five decades, and vari-
ous studies have been conducted. Both traditional algorithms relying on image statis-
tics [2,3,11,16,17,22,23,24,26,28,36,37,41,47,53] and learning-based methods relying
on neural networks [4,5,6,7,19,30,32,33,35,39,49,50,51] have been introduced to pro-
vide an effective solution to the problem. These algorithms may have different neces-
sities, i.e., they may require user scribbles, different focal distances, a depth map, an
image sequence captured with different viewing conditions, an input sequence where
the light source position varies in each scene, an image stack captured under distinct il-
lumination conditions, or a time-varying image sequence [12,43]. Algorithms perform-
ing decomposition by using only a single input image are generally considered to be
more beneficial since in real-world applications we may not have any other information
than the input scene, requiring user interaction might be inefficient, and creating image
stacks in the appropriate format is troublesome [43].

Several of the intrinsic image decomposition algorithms build their strategies on the
fundamentals of the assumptions of the Retinex theory [28]. The utilization of this the-
ory is not surprising since the Retinex method is based on the analysis of the human
visual system, and it is known that algorithms making use of biological findings tend to
provide efficient solutions with a low computational complexity [45,53]. In this study,
we propose a Retinex-based learning-free intrinsic image decomposition method oper-
ating in scale-space and relying on superpixel segmentation. We carry out our compu-
tations at multiple scales since the effectiveness of using scale-space is already proven
in the field of intrinsic image decomposition [20,38]. Furthermore, we prefer this ap-
proach since in our previous studies, we explicitly demonstrated that the effectiveness of
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methods relying on color information can be significantly enhanced using scale-space,
which is sensitive to low-level features [46]. Moreover, we integrate superpixel segmen-
tation, whose advantages are also proven in this field [18,27,40], into our algorithm to
better preserve local information and reduce possible noise [1]. Our algorithm requires
a single RGB image as input and we mainly focus on images containing a single object
similar to previous works, i.e., Barron and Malik [2], and Baslamisli et al. [6]. Contrary
to these studies, we demonstrate our method’s outcomes also on more complex scenes.

The remainder of this paper is organized as follows. In Sec. 2, we introduce our
method. In Sec. 3, we present the experimental results of our algorithm, and in Sec. 4,
we provide a brief summary and discuss possible future directions of our study.

2 Proposed Method

We present an approach based on the fundamentals of the Retinex theory while utiliz-
ing scale-space computations, and superpixel segmentation to estimate the reflectance
and shading of a single image. As aforementioned, we benefit from the Retinex theory,
since it is based on the investigations of the human visual system. Numerous stud-
ies trying to solve ill-posed problems related to the image formation model utilize the
Retinex theory as a building block of their strategy since algorithms based on the hu-
man visual system tend to provide simple yet effective solutions [45,53]. We prefer to
use the Retinex theory in multiple scales since in our previous investigations, we ex-
plicitly demonstrated that simply carrying computations into scale-space improves the
efficiency of color feature-based methods which is not surprising considering that colors
are low-level features of the scene and the scale-space is sensitive to such features [46].
At each scale, we also use superpixel segmentation to better preserve local features [1].
In the following, we explain the steps of our strategy.

In our algorithm, we assume that the input image may contain noise, therefore we
first apply a 3× 3 median filter to the input image I . Then, we form an image pyramid
containing the scale-space representation of I . We adaptively determine the number of
levels of the image pyramid based on the image resolution as N = ⌊ log(min(r,c))

log(2) ⌋ − 2,
where r and c are the numbers of rows and columns of the image, respectively. We
do not take the coarsest two levels into account since locality degrades substantially
at these layers which may negatively affect the preservation of the fine details in the
scene [44,46].

At each scale, we utilize the assumptions of the Retinex theory [28] to estimate the
reflectance, in particular, we are following the assumptions of the color Retinex method
introduced by Grosse et al. [24]. The Retinex algorithm enables us to differentiate be-
tween image variations that are either caused by reflectance or shading by investigating
the local derivatives of the image [53]. While large derivatives are associated with re-
flectance changes r̂, small derivatives are related to changes in shading. Given a certain
threshold t, the horizontal gradient (Gx) and the vertical gradient (Gy) can be classified
as follows:

r̂x =

{
Gx, if |Gx| ≥ tx

0, otherwise
r̂y =

{
Gy, if |Gy| ≥ ty

0, otherwise
, (2)
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where r̂x, and r̂y represent the classified horizontal and vertical gradients for the re-
flectance.

We assume that there is a single light source illuminating the scene, thus all illu-
mination changes can be represented by a single direction in RGB color space. We can
denote this direction as the brightness subspace b, which can be represented by the span
of the white vector [1, 1, 1]T [24]. This vector demonstrates the uniform changes in
all three color channels equally, i.e. it controls the changes in brightness. On the other
hand, the changes in chromaticity, i.e., the color quality irrespective of brightness, are
available in the chromaticity subspace ch which is the null space of the white vector.
We denote the projection of the input image into these subspaces as Gb and Gch, and
utilize separate thresholds for the brightness and chromaticity changes [24]. In the color
Retinex method, specific thresholds are chosen for images by utilizing cross-validation.
In other words, for a given dataset, all parameter combinations are used for all im-
ages, and then for each image, the parameters that provide the lowest mean error on
the other images are chosen. Although this approach provides satisfying outcomes on a
specific benchmark, its computational complexity is high, and in case the scenes’ sta-
tistical distributions vary significantly across the dataset the efficiency of the algorithm
may decrease. Therefore, we prefer to rely on the statistical information of each image
itself to determine effective thresholds adaptively, and compute the gradients for the
reflectance r̂x, and r̂y according to these thresholds as follows:

r̂x =

{
Gb

x, if
∣∣Gb

x

∣∣ ≥ αtbx or
∣∣Gch

x

∣∣ ≥ αtchx
0, otherwise.

(3)

r̂y =

{
Gb

y, if
∣∣Gb

y

∣∣ ≥ αtby or
∣∣Gch

y

∣∣ ≥ αtchy
0, otherwise.

(4)

where tbx and tby , are associated with the thresholds for brightness with corresponding
gradient directions. Similarly, tchx and tchy are the thresholds controlling the chromaticity
information. All thresholds are computed by taking the means of Gb and Gch. α is a
scaling factor which is determined as 0.5 based on practical experiments. Thanks to
this adaptive thresholding operation, at this stage, we obtain a lower computational cost
than the color Retinex method.

After classifying the gradients, we solve an optimization problem to find a re-
flectance image R̂ that best matches these target gradients at each spatial location as
follows:

arg min
R̂(x,y)

[R̂(x,y)− R̂(x− 1,y)− wy(x,y)r̂y(x,y)]
2

+ [R̂(x,y)− R̂(x,y − 1)− wx(x,y)r̂x(x,y)]
2,

(5)

where wx and wy are the weights emphasizing regions containing significant gradient
changes that contribute the most to the overall gradient. We assume that in a local
window, the closest pixels contribute more than the pixels that are far away from the
region having a gradient change, and this can be controlled by a Gaussian function. To
compute the weights, first, we find the local changes Φ by applying a Prewitt filter to
the input scene and then, we fit them into a Gaussian curve as, w =

∣∣exp (−Φ/2σ2)
∣∣

with a scaling factor σ of 3 which is determined based on practical experiments.
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After computing an initial reflectance at each scale, we utilize superpixel segmen-
tation to prevent color ambiguities at local regions caused by possible noise and color
variations. We divide the image into its superpixels by using simple linear iterative
clustering (SLIC) [1]. We prefer to adopt SLIC among other methods such as LSC [31]
and SEEDS [10] since it preserves the boundaries well and it has low computational
complexity. We compute local average color of each superpixel and consider it as the
reflectance of that specific cluster, thus we obtain a coherent reflectance estimate. Sub-
sequently, we further enhance this coherency by using an edge-aware smoothing filter.
We apply a guided filter as a post-processing step [25], and obtain the reflectance for
each scale of the image pyramid.

Afterwards, we collapse the pyramid P{R̂} to obtain the final reflectance. We col-
lapse the pyramid by first upsampling the coarsest level so that it matches the size of
the reflectance image in its consecutive finer scale as follows:

R′ = upsample(P{R̂}N , size(P{R̂}N−1)), (6)
where R′ is the upsampled image, upsample is an operation that matches the size of
P{R̂}N to the size of P{R̂}N−1.

Subsequently, we linearly combine the reflectance image P{R̂}N−1 with R′ as
follows:

R = average(R′,P{R̂}N−1), (7)

where R is the new reflectance at the scale N − 1, and average is a function that
performs linear combination.

Then, we upsample R to match the size of the reflectance at scale N − 2 and lin-
early combine the resulting image with P{R̂}N−2. We continue to perform Eqn. 6 and
Eqn. 7 until we reach the finest scale of the pyramid. The resulting image is our fi-
nal reflectance. After estimating the reflectance component of the scene, we obtain the
shading component by applying Eqn. 1.

3 Experiments and Discussions

In this section, we first briefly explain our experimental setup by introducing the datasets
and the error metric we utilize. Then, we discuss our algorithm’s performance while
providing both statistical and visual results. It is worth mentioning that the baseline
method given in our results corresponds to the baseline algorithm given in the study of
Bonneel et al. [12] where the chromaticity image is considered as reflectance, and the
square root of the direct average of the RGB channels is taken as shading.

3.1 Datasets and Evaluation Strategies

To benchmark our algorithm we utilize three datasets having different characteristics,
such as containing single objects and complex scenes.

The MIT Intrinsic Images dataset [24] is created by Grosse et al. in 2009, and since
then, it is one of the notable intrinsic image decomposition benchmarks in this field.
The MIT Intrinsic Images dataset includes a total of 220 images, where the scenes are
created with 20 real objects having different shapes and texture details. Each image



6 D. Ulucan et al.

contains a single object placed in front of a plain black background, and each scene is
illuminated via a single light source positioned at different locations. The MIT Intrinsic
Images dataset considers the reflectance, shading, and diffuse components, alongside
the specularity information and the binary masks highlighting the positions of the ob-
jects. It is worth to note that similar to other works [4,7,19], we statistically evaluate our
method on the images utilized in the evaluation of the original study of this dataset [24].

To analyze how well our algorithm performs on complex scenes, we utilize two
datasets namely, the Bonneel dataset [12], and the MPI Sintel dataset [15]. The dataset
introduced by Bonneel et al. [12] consists of photorealistic scenes. The images contain
challenging features such as transmissive surfaces, defocus blur, subsurface scattering
and specular elements. The reflectances of the scenes are created using computer graph-
ics, while the shading is obtained by applying Eqn. 1. The MPI Sintel dataset contains
23 different scenes, and 1064 rendered images obtained from an open-source 3D ani-
mated short film called Sintel [15]. The dataset is created for the evaluation of optical
flow but it has also become a widely used benchmark for intrinsic image decomposition
tasks. For each synthetic scene, MPI Sintel provides the ground truth reflectance com-
ponent of the scene. Since the images in this dataset contain repetitive scenes, in our
experiments we utilize random frames from each scene.

To provide a statistical investigation we follow the common practice of performing
an objective evaluation through the widely used quality metric in the field of intrinsic
image decomposition, namely, local mean squared error (LMSE) which is particularly
designed for this task [24]. LMSE is based on the calculations of the classical mean
squared error, and it is computed by averaging the MSE scores over overlapping win-
dows. While reporting the results, we calculate LMSE by using a window size of 20 as
in the original work of the metric. It is important to note that we report the results of
the intrinsic image decomposition methods either according to recent comprehensive
studies [4,19,12] or running the codes of the methods published by the authors in their
default settings.

3.2 Discussion

In Table 1, we present our statistical results for the MIT Intrinsic Images dataset where
we compare our algorithm with 19 different traditional and learning-based methods.
Our algorithm is among the top-three best performing methods, while the two neural
networks-based models achieving lower LMSE scores are fine-tuned on this dataset.
Compared to the reflectance, we obtain a lower mean error for the shading component
where we greatly preserve the structures in the objects (Fig. 1). It is worth mentioning
that we conducted an ablation study on our algorithm where we analyzed the contri-
butions of the individual parts of our method. First, we removed both the scale-space
computations and the superpixel segmentation, then we removed either the scale-space
computations or the superpixel segmentation and we noted that in case we remove one
or two of our main steps, our algorithm’s error increases from 0.0301 up to 0.0351 on
average. Thus, each part of the algorithm has a contribution to its performance.

As given in Table 1, our algorithm focusing on single objects also performs well
on the Bonneel dataset which contains significantly more complex scenes than the MIT
Intrinsic Images dataset. Without any modification, we outperform several algorithms
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Table 1. Statistical comparison of the performance on the MIT Intrinsic Images, Bonneel, and
MPI Sintel datasets. For each dataset, LMSE scores are given. The top results are highlighted
using color coding as follows, best: blue, second-best: cyan, third-best: green, forth-best: yel-
low, and fifth-best: orange. The methods highlighted with * are fine-tuned on the corresponding
datasets. To follow the original work of Bonneel et al. [12], we only report the mean LMSE score
on this dataset. For the MPI Sintel dataset, we do not render the shading component, and we pre-
fer to use the actual ground truth reflectance provided by the benchmark to evaluate our results.
Also, for the MPI Sintel dataset, we set a fixed threshold for the method of Grosse et al. [24].

MIT Intrinsic Images dataset [24]

Algorithm Reflectance Shading Average Algorithm Reflectance Shading Average

Baseline 0.0704 0.0685 0.0694 Yuan et al. (2019) [51] 0.0462 0.0537 0.0499

Grosse et al. (2009) [24] 0.0529 0.0774 0.0652 Ma et al. (2020)* [33] 0.0212 0.0192 0.0202

Gehler et al. (2011) [23] 0.0393 0.0282 0.0338 Xu et al. (2020) [49] 0.0614 0.0672 0.0643

Shen et al. (2011) [37] 0.0523 0.0522 0.0523 Liu et al (2020) [32] 0.0640 0.0474 0.0557

Zhao et al. (2012) [53] 0.0512 0.0253 0.0383 Ren et al. (2020) [36] 0.0486 0.0737 0.0611

Barron and Malik (2014) [2] 0.0491 0.0281 0.0386 Baslamisli et al. (2021) [4] 0.0390 0.0447 0.0419

Shi et al. (2017) [39] 0.0606 0.0595 0.0601 Baslamisli et al. (2021) [7] 0.0438 0.0418 0.0428

Baslamisli et al. (2018) [6] 0.0854 0.2038 0.1446 Qian et al. (2021) [35] 0.0291 0.0319 0.0305

Lettry et al. (2018) [29] 0.0436 0.0472 0.0454 Das et al. (2022)* [19] 0.0210 0.0220 0.0215

Yu and Smith (2019) [50] 0.0573 0.0765 0.0669 Proposed 0.0336 0.0266 0.0301

The Bonneel dataset [12]

Algorithm Average Algorithm Average

Bousseau et al. (2009)* [14] 0.0299 Barron and Malik (2014)* [2] 0.0352

Grosse et al. (2009)* [24] 0.0289 Bell et al. (2014)* [9] 0.0262

Shen et al. (2011)* [37] 0.0201 Narihira et al. (2015)* [34] 0.0212

Gehler et al. (2011)* [23] 0.0217 Zhou et al. (2015)* [54] 0.0190

Zhao et al. (2012)* [53] 0.0301 Lettry et al. (2018) [29] 0.0260

Garces et al. (2012)* [22] 0.0405 Ren et al. (2020) [36] 0.0287

Bonneel et al. (2014)* [13] 0.0275 Proposed 0.0244

MPI Sintel dataset [15]

Algorithm Reflectance Algorithm Reflectance

Baseline 0.0415 Lettry et al. (2018) [29] 0.0464

Grosse et al. (2009) [24] 0.0450 Ren et al. (2020) [36] 0.0393

Shen et al. (2011) [37] 0.0399 Proposed 0.0402

Zhao et al. (2012) [53] 0.0676

on this benchmark, while some of the existing methods achieve lower LMSE scores.
However, it is important to note that most of the results utilized for comparison are
taken from the study of Bonneel et al., where the authors fine-tuned all methods on this
dataset [12]. In other words, several distinct parameter combinations are used for each
method, and for each image, the best-performing parameters are kept, e.g., the lowest
LMSE achieved for each scene is reported. As shown in Fig. 2, overall, our algorithm
recovers the colors in the reflectance well, while strong illumination conditions can leak
into the reflectance component as in other algorithms.

We present our algorithm’s statistical analysis on a subset of the MPI Sintel dataset
in the last part of Table 1. Our method designed for single objects, can perform effi-



8 D. Ulucan et al.

Input and Ground Truths Baron and Malik Zhao et al. Proposed

Fig. 1. Visual comparison of the algorithms on random examples on the MIT Intrinsic Images
dataset.

Input and Ground Truths Shen et al. Lettry et al. Proposed

Fig. 2. Visual comparison of the algorithms on random examples on the Bonneel dataset.

ciently on this dataset and preserve the structures in the images well. The visual results
for MPI Sintel are provided in Fig. 3.

As a final note, our algorithm achieves competitive results compared to other meth-
ods yet it suffers from widely recognized issues such as shadow, illumination and tex-
ture leakage, which are challenges shared by other algorithms in the field [6,17,29,37,42].
For instance, challenges due to shadows can be seen on the third row in Fig. 2 where
shadows leaked into the estimated reflectances of the algorithms.
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Input and Ground Truth Grosse et al. Shen et al. Lettry et al. Proposed

Fig. 3. Visual comparison of the algorithms on random examples on the MPI Sintel dataset.

4 Conclusion

Intrinsic images present different features of images and they can be used in various
computer vision and computer graphics applications such as surface re-texturing and
exposure correction to improve the outcomes. We have introduced a reflectance and
shading estimation strategy that relies on the Retinex theory, scale-space computations,
and superpixel segmentation. All components of our method contribute to its efficiency
by giving importance to different aspects of the intrinsic image decomposition problem.
We demonstrate that our simple yet effective method can achieve competitive results
compared to the state-of-the-art without requiring a huge amount of data which we
see as a strength of our algorithm. As future work, we will focus on the limitations of
our algorithm such as shadow, illumination, and texture leakage to further improve our
outcomes, particularly on complex scenes from new datasets.
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