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Abstract. In recent studies, alongside introducing new approaches for color con-
stancy, we have also focused on improving existing techniques and introducing
new perspectives. Our motivation is the idea that investigating different strate-
gies, concepts, and their combinations that have not been analyzed in this field
in detail yet, might help us to find simple, effective, and cost-efficient solutions.
Thereupon, we utilized observations we obtained from our algorithms to analyze
how we can enhance the performance of well-known learning-free methods. We
demonstrated why using salient pixels, performing block-based operations, and
carrying out scale-space computations benefit color constancy approaches sig-
nificantly and provide a notable performance increase. In this study, we make
use of our recent observations on learning-free algorithms to analyze if they are
also beneficial for enhancing the performance of a learning-based color constancy
model. According to our evaluation, all of our observations contribute to the per-
formance of a convolutional neural network model and increase its effectiveness
in estimating the illuminant. Thus, the contribution of these strategies in learning-
based models should be further investigated to improve their performance with
simple yet effective solutions.

Keywords: Color constancy · illuminant estimation · white-balancing.

1 Introduction

Our visual system has evolved in such a way that it can discount the illuminant of the
environment, and perceive the true colors of the objects [61]. For instance, when we
enter a room illuminated by purple light, we are able to recognize the color of a white
object as white. This ability of unconsciously discounting the light source of a scene
is called color constancy, and it is usually also referred to as a phenomenon since the
biological mechanism behind this ability is not yet fully understood. While we can
perform color constancy unintentionally, machine vision systems require guidance to
perform this task since as a result of the interaction between the sensitivity of the camera
sensors and the light source of the scene, a white object illuminated by purple light
would be captured as purple [55]. The field analyzing this problem from the perspective
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of computer science is called computational color constancy. It benefits both digital
photography and various computer vision tasks including but not limited to underwater
image enhancement and image dehazing.

In computational color constancy, we utilize an image formation model where we
mostly assume that (i) the surfaces are Lambertian, i.e., the surface is equally reflecting
the light into all directions, and (ii) there is a point light source illuminating the scene.
Furthermore, we presume that the camera capturing the scene consists of three sensors
that detect the energy of incoming light by reacting to a particular segment of the visible
spectrum, e.g., short-, middle-, and long-wavelengths. By taking these assumptions into
account, we can mathematically express an image I based on the irradiance E falling
onto the sensors of the capturing device, and the sensor sensitivity function S of the
camera representing the responses of the sensors to light at a particular wavelength as
follows:

I(x, y) =

∫
w

E(x, y;λ)Si(λ)dλ, (1)

where (x, y) is the spatial location, λ corresponds to the wavelength of the visible spec-
trum w, and i ∈ {long, middle, short}.

We can formulate the irradiance falling onto the sensors of the camera by making
use of its relationship with the reflectance R(x, y;λ), the scaling factor G(x, y), and
the point light source L(x, y;λ) as follows:

E(x, y;λ) = G(x, y)R(x, y;λ)L(x, y;λ), (2)

where G(x, y) can be taken as cos α, where α is the angle between the surface normal
vector and a vector pointing in the direction of the illumination source.

We can model an image by utilizing Eqn. 1, and Eqn. 2 as follows:

I(x, y) = G(x, y)

∫
w

R(x, y;λ)L(x, y;λ)Si(λ)dλ. (3)

In color constancy, we aim at computing L from a color cast image I by taking
advantage of Eqn. 3. Yet, despite the aforementioned assumptions the ill-posed nature
of the problem cannot be overcome due to the fact that the image is affected by both the
lighting conditions and the often unknown sensor characteristics in real-world scenar-
ios. Therefore, to relax the problem, we generally make additional assumptions such as
a single light source is illuminating the scene, G does not affect the computation of the
illuminant, and the responses of the capturing device are narrow-band, e.g., they can be
approximated by Dirac’s delta functions [21]. Consequently, a color-cast image can be
represented as the Hadamard product of the (shaded) reflectance R and the single light
source L as follows:

I(x, y) = R(x, y) ◦· L. (4)

Over the last decades, various single-illuminant color constancy algorithms have
been introduced which depend on different strategies [21]. These algorithms can be cat-
egorized as traditional and data-driven methods. The former utilizes image statistics to
compute the color vector of the light source. The most well-known traditional methods
are white-patch Retinex [39] and gray world [13] whose assumptions lay the founda-
tions of several other classical color constancy algorithms [10,16,24,29,35,45,55,57].
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Traditional methods are mostly cost-efficient and easy to implement, however, their
ability of computing the color vector of the light source may decrease significantly
if only a limited number of different colors is available in the scene [14]. Close-up
shootings and scenes with dominant sky or grass regions can be given as examples of
scenes that are challenging for classical color constancy algorithms. On the other hand,
data-driven methods generally achieve higher accuracy on images having a uniform
color distribution. Data-driven models can be further grouped as gamut-based meth-
ods [9,22,23,25,30], Bayesian strategies [11,12,27], and neural network-based mod-
els [1,8,17,18,34,37]. Neural networks-based models estimate the illuminant by learn-
ing from the features present in their large-scale training sets [15]. Early neural network
models make use of convolutional neural networks [4,7] which are still widely used in
this field [1,6,18,34].

In our previous studies, we investigated the effects of utilizing block-based oper-
ations, salient pixels, and conducting scale-space computations in the field of color
constancy. We showed that these operations can improve the performance of existing
traditional color constancy algorithms, and we demonstrated that we can introduce new
classical methods based on these strategies [54,55,56,57,58]. In this study, we utilize
all our previous observations on learning-free algorithms and apply them to a convolu-
tional neural networks (CNNs) model to ascertain whether they might also be useful for
learning-based strategies. For our investigation, we adopt the CNNs model introduced
by Bianco et al. [7] as our baseline architecture since (i) the simple structured model
contains a low number of parameters, and (ii) it is specifically designed for estimating
the color vector of light sources based on the image’s locally varying statistics, i.e.,
image patches, which overlaps with one of our previous observations. We modify this
model with a mechanism to guide the model to only consider the salient pixels since
not all regions are informative while estimating the illuminant [35,55]. Moreover, we
extend this model to multiple scales since estimating the illuminant with a scale-space
approach improves the performance [57,58]. These two observations also coincide with
experiments on the human visual system which we often try to mimic in computer vi-
sion, i.e., the human visual system may benefit from regions with the highest luminance
while discounting the effects of the light source [20,42,43,50], and the illuminant es-
timate is available in the stimulus at the proper scale [48,49]. In our experiments, we
demonstrate that our simple yet effective operations are beneficial for a learning-based
model as well.

This paper is organized as follows. In Sec. 2, we revisit the color constancy model
introduced by Bianco et al. [7], while also introducing our simple modifications and
detailing the training phase. In Sec. 3, we introduce our experimental setup and discuss
the performance of the model. Finally, in Sec. 4, we summarize our work.

2 Modifications based on Recent Observations

As we discussed in Sec. 1, the modifications we proposed are based on our recent obser-
vations on learning-free color constancy algorithms. In order to investigate whether the
observations are also beneficial for a learning-based approach, as our foundation model,
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we utilize the approach introduced by Bianco et al. [7]. In this section, we revisit the
architecture, introduce our modifications, and detail our training procedure.

2.1 Revisiting Color Constancy using CNNs

The network consists of only 5 layers. The input layer takes in 32× 32× 3 RGB image
patches. Afterwards, a convolutional layer utilizes a bank of 240 1× 1× 3 kernels with
a stride of 1 to filter the input. This operation results in a feature map with a size of
32 × 32 × 240 which is reduced to 4 × 4 × 240 by using a max-pooling layer with
a 8 × 8 kernel. The obtained feature maps are then reshaped into a 3840 dimensional
vector and sent to a fully connected layer of 40 nodes. Subsequently, a ReLU activation
function is utilized, and a 40× 3 dense layer is added to obtain the illuminant estimate.
Consequently, the model consists of a total 154,723 trainable parameters.

2.2 Adjusting the Baseline Model

We prefer to maintain the input requirements of the network since Bianco et al. [7]
stated that a block size of 32 × 32 is sufficient while smaller ones are not, and since
we recently investigated the impact of block sizes on color constancy and demon-
strated that there is indeed a certain block size range to effectively perform color con-
stancy [55,57,58]. Adjusting the block size appropriately is important since when we
choose large image blocks we might neglect the varying surface orientations present at
local regions which decreases the considered amount of information [55]. On the other
hand, if we select small block sizes the possibility of obtaining uniformly colored in-
puts increases, thus, the information that can be extracted from a block decreases [55].
Therefore, to respect the local information varying throughout the scene, and to keep
the number of parameters of the model adequately low, we utilize image blocks with
the size of 32× 32× 3.

Salient Pixel Detection Layer. We first add a mechanism to the model to assign
larger weights to the brightest pixels in the image and to decrease the impact of the
non-informative elements. We can explain the reason behind the choice of this mecha-
nism based on biological findings and from the perspective of computational photogra-
phy [59]. According to biological studies the human visual system might be discount-
ing the illuminant of the scene by relying on the regions having the highest luminance
rather than the darkest areas [40,42,43,50]. Furthermore, in digital photography it is
known that estimating the illuminant can be easier when achromatic regions are used
rather than colored ones [19,35,44,45,54,58]. In this study, to utilize the salient pixels,
i.e., brightest pixels, we obtain the luma of the image block and determine the pixels
having highest brightness by selecting the top brightest pixels in the block. It is im-
portant to stress that while selecting the brightest pixels, we exclude the over-saturated
pixels to reduce possible noise since these elements negatively affect the performance
of the color constancy algorithms [55]. According to our experiments, choosing 50% or
more of the brightest pixels is sufficient to estimate the color vector of the light source.
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We select this threshold since in our previous experiments we determined that approxi-
mately 3% of the brightest pixels for a whole image is adequate to effectively estimate
the illuminant [55]. Since we consider much smaller image regions in this study, i.e.,
blocks with the size of 32×32×3, we adjust the number of the brightest pixels accord-
ingly. After highlighting the top brightest pixels, we mask the darkest regions and weigh
the input block with the resulting saliency map. It is worth noting that achromatic pix-
els have already been used in learning-based models as salient pixels [6]. However, the
model used in that study requires a significantly high number of trainable parameters
due to the nature of the U-Net architecture [47]. On the other hand, our simple weight-
ing process allows us to avoid raising the complexity of the model while providing a
significant performance increase which we demonstrate in Sec. 3.

Scale-space Computations. Lastly, we consider scale-space computations in our ap-
proach since they allow us to capture local details and global context more effectively,
and enable us to highlight discriminative patterns that are not apparent at an individual
scale. Furthermore, we prefer to perform operations at multiple levels since for studies
utilizing the color feature, the scale-space computations are beneficial thanks to their
sensitivity to low-level features [28,41,51]. As color is a low-level feature, utilizing
scale-space computations naturally benefits the task of illumination estimation [57,58].
This is also not surprising, considering that in the human visual system, the informa-
tion we require for accurate local estimates of the illumination might be available in
the stimulus at the appropriate scale [48,49]. To mimic the scale-space computations in
the model, we downsample either the input block or the input block weighted by the
salient pixels. We consider only the first 4 levels of the image pyramid since the spa-
tial information degrades significantly at further coarser scales [53]. After forming the
image pyramid, at each scale, we apply a convolutional layer with 240 filters followed
by a max-pooling layer with distinct kernel sizes to pool the feature maps. For instance,
we pool the features coming from the finest scale via a max-pooling operation with a
kernel size of 8 × 8, while for the consecutive scale, we select a kernel size of 4 × 4.
This ensures that we maintain a balance between the preservation of spatial information
and the reduction of the dimensions of the feature maps. Thus, we optimize the feature
extraction process for each scale and enhance the model’s ability to capture various
patterns across different levels of the pyramid. Subsequently, we combine the features
into a vector and forward them to the fully connected layer. The scale-space computa-
tions increase the number of trainable parameters to approximately four times that of
the baseline model since we are considering the first four levels of the image pyramid.

2.3 Training Phase

Data Augmentation. For the training process, we utilize the ColorChecker RECom-
mended dataset [27], which is detailed in Sec. 3.1, to stay consistent with the prior
study [7]. However, we employ a different data augmentation strategy from the prior
work based on the observations from our previous study in which we demonstrated that
the performance of learning-based models tends to decrease significantly when only
a limited number of illumination conditions are considered in their training sets [56].
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Motivated by this observation, and the fact that 568 images and illumination condi-
tions alone are inadequate for the effective training process, we augment this dataset as
follows. First of all, by using the linear input images and their corresponding ground
truth color vector of the light sources, we obtain ground truth white-balanced images
via the inversion of Eqn. 4. Then, to augment the dataset by considering various single-
illuminant light source conditions, we collect additional color vectors of the illuminant
that are present in well-known benchmarks, i.e., the INTEL-TAU [38], and Cube+ [3]
datasets. In case there is a repetitive illuminant vector after combining the ground truths
of benchmarks, we discard the color vectors having the same RGB triplet [52]. Thus,
we obtain an illumination set with unique color vectors of the light source. Afterwards,
for each ground truth image, we randomly select 3 illuminants from this set, and by
using Eqn. 4, we render a total of 1704 new scenes. It is important to note that, while
rendering the images, we remove the randomly selected illuminant from our illumina-
tion set to prevent rendering the scenes with the same color vector of the light source.
Lastly, we extract 32 × 32 × 3 non-overlapping blocks from the images and remove
blocks containing a color calibration object, consequently, we obtain a total of 1307943
blocks. Through utilizing image blocks rather than the whole image, we obtain a high
number of inputs that satisfy the requirements of learning-based models [7].

Training Parameters. Our model learns its parameters by minimizing the Euclidean
loss. We train our model using the Adam optimizer whose exponential decay rate for
the first and second-moment estimates is assigned as 0.9 and 0.999, respectively. We
set the number of epochs to 100 and the learning rate to 10e − 7. We clip the gradient
of each weight individually to avoid that its norm is higher than 1. Furthermore, we
consider to add a weight decay of 10e − 8 for better generalization. It is important to
note that we did not fine-tune the model according to the angular error as in the prior
work [7].

3 Experiments and Discussions

In this section, we detail our experimental setup, while briefly introducing the datasets
and the evaluation strategy that is widely adopted in color constancy. To report the re-
sults of algorithms, we either run the original codes without any optimization, utilize the
outcomes of the original works, or use the reported results from recent comprehensive
publications [58].

3.1 Datasets

In our experiments, we utilize 2 publicly available, comprehensive single-illuminant
benchmarks covering different lighting conditions and camera specifications. To evalu-
ate our model on these datasets, if necessary, we perform preprocessing, i.e., masking
the calibration objects, substracting the black level, and clipping the under- and over-
saturated pixels according to the masks provided in the benchmarks.

The ColorChecker RECommended dataset is the processed version of the Gehler-
Shi dataset [27,32]. The benchmark contains a total of 568 distinct scenes: 254 indoor,
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85 outdoor, and 229 close-up images [14], and their corresponding ground truths along
with the masks to handle under- and over-saturated regions, and the position of the
calibration object. Two cameras, i.e., Canon 1D and Canon 5D, are utilized to capture
the scenes. The INTEL-TAU dataset is introduced by Lakoom et al. [38], and it includes
a total of 7022 images: 1466 indoor, 2327 outdoor, and 3229 close-up scenes [14]. The
images are captured with 3 different cameras, namely, Nikon D810, Canon 5DSR, and
Sony IMX135. All the scenes in INTEL-TAU are preprocessed, i.e., images have a
linear response, and their black level is calibrated. Moreover, all the sensitive data, i.e.,
faces, and license plates, is masked. During our experiments, we only utilized the scenes
from the sets of "field1" and "field3" since some of the images in the other sets, i.e. "lab
printouts", and "lab realscene", include an unmasked calibration object.

3.2 Evaluation Metric

To statistically investigate the model’s performance, we adopt a widely used error met-
ric in color constancy, namely, angular error [33]. We report the mean, median, and
mean of the best and worst %25 of the angular errors.

The angle (ε) between the color vector of the estimated of the light source (Lest)
and the ground truth illuminant (Lgt) can be calculated as follows:

ε(Lest, Lgt) = cos−1
(

LestLgt

∥Lest∥∥Lgt∥

)
. (5)

3.3 Discussion

We report our statistical analysis for both benchmarks in Table 1. The first noticeable re-
sult is that modifying the baseline model with our strategies improves the performance
significantly. Each stage, i.e., guiding the network with information coming from the
salient regions, and carrying the model into multiple scales, enhances the overall per-
formance of the baseline method. Furthermore, the worst cases almost always improve
significantly through the modifications which is a valuable outcome since in color con-
stancy it is known that improving the algorithms’ performance for the worst cases is
important.

We obtain the best outcomes when we either modify the baseline model with the
salient pixels or consider salient pixels with the scale-space computations. If we com-
pare the contribution of the salient pixels and the scale-space computations, it is clear
that considering the salient pixels benefits more in general. This result can be explained
by the fact that not all regions are informative for color constancy, hence reducing the
effect of the non-informative elements allows us to improve the overall performance.
It is important to stress that while guiding the network to give more importance to the
salient regions, our modification does not increase the number of trainable parameters.
Hence, without increasing the complexity of the model, this modification allows us to
enhance the performance significantly.

We provide visual investigations in Fig. 1 where we compare different modifications
on the baseline model with other algorithms. We provide results chosen from the best
and worst cases randomly. The baseline model modified with the salient pixels and/or
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Table 1. Statistical results on 2 benchmarks. The top results are highlighted using color coding
as follows, first: blue, second: cyan, third: green, forth: yellow, and fifth: orange. The abbrevia-
tions SP, MS and MSSP correspond to the salient pixels, multi-scale, and multi-scale with salient
pixels, respectively.

ColorChecker RECommended INTEL-TAU
Algorithms B-25% W-25% Mean Med. B-25% W-25% Mean Med.

L
ea

rn
in

g-
fr

ee

max-RGB [40] 1.49 17.47 7.78 5.43 1.70 19.24 10.49 11.14

GW [13] 0.93 10.44 4.71 3.54 0.93 10.59 4.90 3.85

1st - GE [60] 0.93 14.17 5.79 3.68 0.94 13.79 5.89 4.07

2nd - GE [60] 1.03 14.70 6.09 3.97 1.00 14.13 6.09 4.25

wGE [31] 0.78 15.57 6.08 3.33 0.80 14.89 5.99 3.63

DOCC [26] 0.79 18.04 7.23 4.26 0.80 16.97 7.18 4.66

MSGP [46] 0.76 8.35 3.81 2.96 0.64 8.23 3.57 2.56

GI [45] 0.44 8.02 3.19 1.90 0.56 8.03 3.32 2.18

BIO-CC [54] 0.86 9.84 4.40 3.30 0.76 9.42 4.14 3.05

BB-CC [55] 1.06 7.37 3.48 2.71 0.79 7.25 3.37 2.63

MSCC [58] 0.62 7.32 3.16 2.16 0.59 7.47 3.23 2.23

L
ea

rn
in

g-
ba

se
d

Quasi-U CC [6] - - 3.46 2.23 0.60 7.28 3.12 2.19

SIIE [2] 0.55 6.53 2.77 1.93 0.73 7.80 3.42 2.42

C3AE [37] 0.80 4.00 2.10 1.90 0.90 7.00 3.40 2.70

One-Net CCC [18] - - - - 1.10 5.90 3.30 3.20

FFCC [5] 0.57 6.75 2.95 2.19 0.70 7.96 3.42 2.38

FC4 [34] 0.34 4.29 1.77 1.11 0.70 5.50 2.60 2.00

C5 [1] 0.53 5.46 2.50 1.99 0.52 5.96 2.52 1.70

BoCF CC [36] - - - - 0.90 6.10 2.90 2.40

Baseline 0.92 6.54 3.23 2.64 0.92 6.55 3.20 2.56

Baseline w/ SP 0.62 5.98 2.70 2.00 0.79 6.11 2.90 2.27

Baseline w/ MS 0.75 6.32 3.00 2.34 0.84 6.56 3.16 2.51

Baseline w/ MSSP 0.73 5.92 2.82 2.26 0.82 6.10 2.93 2.29

the scale-space can output visually pleasing results with very low angular errors for
the best cases while for the worst cases, an additional analysis should be conducted to
enhance the outcomes even further.

As a final note, we would like to mention that in this study, we do not aim to de-
sign a state-of-the-art model that outperforms all other color constancy algorithms. We
intend to present that with our simple yet effective modifications, we can improve the
performance of a network, which we aimed as future direction in our previous works.
As shown in Table 1, the baseline model alone cannot compete with the state-of-the-art
models, but with our modifications, we can increase its performance so that this model
performs well while providing competitive results. Thus, the effects of block-based
strategies, salient pixels, and scale-space operations should be investigated thoroughly
to improve the performance of learning-based color constancy algorithms.

4 Conclusion

Color is an important feature not only for us but also for a wide range of computer
vision applications. Many image processing tasks, such as underwater image enhance-
ment and image dehazing, use color constancy at the first stage of their pipelines. Com-
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Input Image Ground Truth GW Baseline w/ SP

Input Image Ground Truth GI Baseline w/ MS

Input Image Ground Truth MSCC Baseline w/ MSSP

Fig. 1. Comparison of random results on best and worst cases for each stage of the modification.
The angular errors are given on the bottom-right side of the images. Gamma is adjusted for better
visualization.

putational color constancy is framed as a computational challenge that has been widely
studied for more than five decades due to its significance. Researchers have developed
numerous methods, and have aimed at improving the existing algorithms by exploiting
the effectiveness of different approaches to provide simple yet effective solutions to
the ill-posed nature of the problem. Motivated by this aim, alongside developing new
methods, we also investigate how we can improve the performance of algorithms in
estimating the illuminant. In our previous studies, we explicitly demonstrated that the
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performance of learning-free methods can be significantly enhanced by using the fol-
lowing strategies: (i) considering varying local statistics of the scenes, i.e., block-based
approaches, (ii) utilizing the salient pixels, i.e., the pixels having the highest luminance,
and (iii) multi-scale operations. We mentioned that we will use our observations to in-
vestigate if they are beneficial for a learning-based model. Thereupon, in this study, we
use our observations to modify a convolutional neural network designed for color con-
stancy. According to our experiments, guiding the network to give more weight to the
salient regions and carrying out scale-space computations improves the performance of
the model, and allows it to compete with the state-of-the-art. Consequently, we can con-
clude that one can use the observations obtained from traditional algorithms to modify
learning-based models with simple yet effective approaches to improve their effective-
ness without significantly increasing their computational complexity. As future work,
we will investigate the effects of our observations on different models, and further im-
prove the algorithms’ effectiveness in the worst cases.
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