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Abstract—Low-light images are common in various fields but
often suffer from decreased efficiency due to noise and color
degradation. Low-light image enhancement aims to address these
issues by producing images similar to those captured under nor-
mal lighting. Recently, we introduced the first algorithm that
addresses both color constancy and color assimilation illusions
which is an approach inspired by the human visual system and
based on the local space average color method in scale-space. In
this paper, we extend our previous work by slightly modifying
this strategy for low-light image enhancement. We evaluate our
approach against 34 methods across 6 datasets. Experimental
results demonstrate that our method effectively illuminates dim
scenes, enhances fine details, and eliminates undesired color casts.
To the best of our knowledge, this is the first study to integrate
color constancy, color illusions, and low-light image enhancement
while also demonstrating the impact of the local space average
color method in this context. One of the key strengths of our
learning-free algorithm is its ability to simultaneously remove
color casts and enhance low-light images, producing outputs
with vivid colors and eliminating the need for a separate color
constancy step.

Index Terms—low-light image enhancement, multiresolution
color constancy, illumination estimation.

I. INTRODUCTION

Images captured under poor lighting conditions are often
called low-light images; however, in practical applications,
there are no precise theoretical values defining what consti-
tutes a low-light environment [51]. Low-light images typically
suffer from noise, blurriness, color degradation, a narrow
gray range, and reduced contrast [37], [51]. Various factors
contribute to this decline in image quality, such as lens char-
acteristics, short exposure times, and fast shutter speeds [64].
Low-light image enhancement aims to obtain normal-light
images by overcoming these issues.

Enhancing low-light images is crucial for ensuring that
they serve as useful data in fields such as video surveillance,
object classification, and remote sensing [37]. To address this
need, both hardware- and software-based solutions have been
proposed. Hardware-based solutions, however, have signifi-
cant disadvantages: developing robust hardware is laborious
because manufacturing low-light circuits and filters requires
excellent precision, and high-quality hardware is usually too
expensive for everyday use [51]. Furthermore, the lack of
an established standard for defining low-light environments
means that individual image sensor manufacturers often es-
tablish their own criteria [51]. In contrast, software-based

solutions typically incur lower costs, and if needed, they can
be easily modified. With software, noise can be removed, tone
and fine details can be recovered, and the dynamic range
and contrast of scenes can be increased which enables both
human observers and machine vision systems to extract more
information from images [2], [41].

Over the last few decades, numerous image enhancement
strategies have been introduced to overcome the challenges
posed by low-light scenes [37]. These algorithms can be
broadly grouped into two categories: traditional methods [10],
[14], [15], [20], [27], [36], [50], [61] and deep learning-based
models [5], [6], [23], [24], [28], [30], [34], [49], [53], [56],
[60], [63]. Traditional methods typically employ techniques
such as histogram equalization, gamma correction, dehazing
strategies, image fusion, and the Retinex theory, whereas deep
learning-based models utilize approaches like supervised, un-
supervised, semi-supervised, and zero-shot learning [37], [64].
Traditional algorithms have strong theoretical foundations and
provide simple yet effective solutions, but they may result
in color loss and noise generation [51]. On the other hand,
machine learning models generally achieve better performance
but are heavily dependent on their training sets and have high
computational complexity [51].

Recently, we proposed a method that mimics the behavior of
the human visual system with respect to two computationally
opposing perceptual phenomena: color constancy and color
illusions [46]. In our algorithm, we combined the best of two
worlds by considering the observations made in computational
biology and the experience of white-balancing in computer
vision. Our motivation was to address a gap in existing
methods. There was no algorithm in computer vision that
could be deceived by color illusions while simultaneously
performing color constancy, despite the significance of this
capability as highlighted in computational biology [8]. Our
simple yet effective approach relies on scale-space operations
and the fundamentals of local space average color [11],
which correspond closely to processes in the human visual
system [17], [25], [29]. We modified the local space av-
erage color algorithm by applying it across multiple scale-
spaces, thereby proposing a multiresolution color constancy
approach that essentially performs scale-space computations
within scale-space computations. In this paper, we extend our
previous work by investigating low-light image enhancement
from the perspective of our learning-free method. We introduce



slight adjustments to our algorithm without altering its overall
framework so that it can perform three different tasks. To the
best of our knowledge, this is the first study to address both
color constancy and color illusions while also performing low-
light image enhancement. Furthermore, it is the first study to
analyze the impact of local space average color algorithm in
the context of low-light image enhancement. We demonstrate
the effectiveness of our algorithm by evaluating our strategy
on 6 datasets. Experimental results show that the proposed
method can enhance dim images while simultaneously remov-
ing color casts using a single pipeline which is an advantage
for many vision applications.

II. COMPUTATIONAL COLOR CONSTANCY

We provide a brief introduction to color constancy, which
we leverage to enhance scenes captured under low-light con-
ditions. Visual processing begins when photoreceptors in the
retina measure the incident light, whereas cameras process
visual information when their sensors capture the incident
light [44]. Assuming a camera with three distinct sensors, each
sensor typically responds to a specific portion of the visible
spectrum—namely, short-, middle-, and long-wavelengths. In
color constancy, we commonly assume the Lambertian image
formation model, where the scene is illuminated by a point
light source L. Accordingly, the measured signal I at each
spatial location (x, y) can be expressed as:

I(x, y) = G(x, y)

∫
w

R(x, y;λ)L(x, y;λ)S(λ)dλ, (1)

where R is the reflectance, G is a geometry factor based on the
angle between the surface normal and the light source direc-
tion, and S represents the camera sensor’s spectral sensitivity.

In color constancy, our objective is to determine the illu-
minant L to obtain a canonical (i.e., white-balanced) image.
However, this task is challenging because color constancy is an
ill-posed problem; it depends on both the illumination and the
sensor characteristics, which are rarely known in real-world
applications. To simplify the problem, we assume that there is
a spatially uniform light source L illuminating the scene, the
camera sensor responses are narrow-band, and the geometry
factor G is uniform throughout the scene [11]. Under these
assumptions, any image can be modeled as the Hadamard
product of the reflectance R and the illumination L:

I(x, y) = R(x, y) ◦ L. (2)

Over the decades, numerous color constancy algorithms
have been developed [12], [40], [42], [43], [47]. While as-
suming a single illuminant in a scene can yield visually
pleasing images, this assumption is often invalidated in real-
world settings due to shadows, multiple light sources, and
interreflections [12]. To overcome these issues, some methods
assume that the scene is illuminated by spatially varying light,
yet the number of these methods is quite limited in comparison
to single-illuminant algorithms [1], [3], [11], [45].

III. PROPOSED METHOD

Our method is based on key observations of human color
processing: (i) the information required for illuminant estima-
tion is present in the stimulus at an appropriate scale [38],
[39], (ii) the human visual system may achieve color con-
stancy by relying on the space average color [4], [11], [25],
[29], and (iii) global changes caused by the illuminant are
primarily carried in the low spatial frequency components;
thus, removing blurred content from the input can produce
results that align with human perception [9], [38], [39].

A. Revisiting Local Space Average Color

Our approach builds on the local space average color algo-
rithm for the following reasons: (i) it has a strong correspon-
dence in the human visual system, (ii) it is designed for scenes
illuminated with spatially varying lighting conditions, (iii) it is
independent of training data, and (iv) it utilizes only low-level
processing to estimate the reflectance of the scene [11].

Local space average color estimates the color of the light
sources by using an iterative strategy [11], where convergence
may take time. To avoid this high computational cost while
achieving comparable results, a convolution operation can be
used to calculate the space average color a as follows:

ai(x, y) = k(x, y)

∫ ∫
Ii(x, y)g(x− x′, y − y′)dx′dy′, (3)

where subscript i represents the color channels of the image,
i ∈ {r, g, b}, and the scaling factor k is chosen such that

k(x, y)

∫ ∫
g(x′, y′)dx′dy′ = 1, (4)

where g represents the two-dimensional Gaussian kernel de-
fined as 1

2πσ2 exp(−x2+y2

2σ2 ). The parameter σ determines the
kernel’s scale and is typically assigned a value such as
σ = γ(max{h,w}/2), where h and w are the image’s
height and width, respectively. The choice of γ is crucial to
ensure that local averaging covers a sufficiently large region
containing a diverse set of objects with varying reflectance
properties. This is necessary because the local space average
color method assumes that the average color of a scene is
gray, a hypothesis that holds only when the scene contains
a sufficient variety of colors [11]. For scenes illuminated
by a single light source, γ should be chosen larger, while
for those illuminated by multiple light sources, a smaller
γ is preferable. Unlike our previous work [46], where we
accounted for varying illumination, in this study, we assume
a dominant single light source. Thus, we utilize a larger γ. In
Sec. IV, we compare our initial approach with the modified
version adapted for the present study’s task.

Finally, the reflectance o of the input scene can be estimated
as follows:

o(x, y) ≈ I(x, y)

fa(x, y)
, (5)

where f is a scaling factor applied equally to all color channels
and is set to 2, assuming a perpendicular orientation between
the objects and the capturing device [11].



B. Multiresolution Color Constancy

In our previous work [46], we proposed a multiresolution
color constancy approach that simultaneously addresses two
computationally opposing perceptual phenomena. In this pa-
per, we apply this approach to the task of low-light image
enhancement, and this section details our strategy.

Firstly, we determine the number of pyramid levels nL
based on the image resolution as nL = ⌊log2(min(h,w))⌋. At
each pyramid level, we obtain the representations of the input
image and compute their pixel-wise light source estimates
using the local space average color method (Sec. III-A).

After obtaining the representations of the input scenes with
their corresponding local estimates, we perform our mul-
tiresolution color constancy strategy. Let l denote a pyramid
level, with l ∈ {1, ..., nL}. For the l -th level, we construct
a Gaussian pyramid of the local estimates G{al(x, y)}, and
a Laplacian pyramid of the input scene L{Il(x, y)}, where
the number of the scales, S, for both pyramids is determined
based on the image resolution, as previously described.

Subsequently, we compute the reflectance at scale s using
a similar operation to that in Eqn. 5:

P{ol(x, y)}s =
L{Il(x, y)}s

G{al(x, y)}s
, s = 1, 2, . . . ,S, (6)

where we obtain a resulting pyramid P{ol(x, y)} by repeating
this calculation for all scales in {1, ...,S}. Then, we collapse
the resulting pyramid to obtain an output for the l -th level. We
repeat this operation for all levels in {1, ..., nL}. This results
in a pyramid containing estimated reflectances for all levels
in {1, ..., nL}. Finally, we collapse this pyramid to obtain a
single output reflectance.

C. Contrast Enhancement

Lastly, we enhance the contrast of the output reflectance.
Instead of enhancing the luminance via CLAHE [65] as in our
previous work [46], in this study, we perform percentile-based
contrast stretching (this design choice is detailed in Sec. IV).

We begin by applying the gray-world algorithm [4] to
the input image I . Afterwards, we convert the image from
RGB to the CIELAB color space (we utilize D65 as white
point and using other white points has ignorable effects on
the results) and extract the luminance component L∗. To
enhance the contrast of L∗ while minimizing the influence
of outliers, we employ a percentile-based contrast stretching
approach. Specifically, the 0.5th and 99.5th percentiles of the
intensity distribution are computed, with values below the
0.5th percentile clipped to the minimum, and those above
the 99.5th percentile clipped to the maximum. Then, we use
the same percentiles to enhance the L∗ channel of the output
reflectance, ensuring consistency in contrast adjustments.

Afterwards, we linearly combine the enhanced L∗ from
the input image with the enhanced L∗ channel of the output
reflectance. Finally, we recombine the resulting luminance
component with the a∗ and b∗ chromaticity channels of the
output reflectance, and convert the modified image back into
the RGB color space to produce our final output.

IV. EXPERIMENTS AND DISCUSSION

We provide a comprehensive comparison with 34 algorithms
across 6 datasets. We evaluate our algorithm on the LOL-
v1 and LOL-v2 datasets [53], [60], which include ground
truth images, and on the MEF [31], DICM [26], LIME [19],
and VV [48] datasets, which do not contain ground truths.
For the former, we benchmark our algorithm using the peak
signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM) [52], while for the latter, we use the natural image
quality evaluator (NIQE) [33]. We report the results based on
either the codes provided by the authors or other works that
are considered comprehensive and up-to-date [5], [21], [22].

As shown in Table I and Table II, our algorithm achieves
competitive performance on all datasets, ranking among the
top 3 methods. Our learning-free algorithm relying entirely on
low-level processing, outperforms traditional algorithms and
competes with state-of-the-art models by effectively recov-
ering details in low-light images. Furthermore, the proposed
method, explicitly designed to address color constancy and
color illusions [46], successfully restores fine details in low-
light conditions. Notably, when low-light scenes contain color
tints caused by illumination effects, other algorithms often
introduce noise and undesirable color casts in their outputs,
as illustrated in the first row of Fig. 1. In contrast, our
multiresolution color constancy method largely avoids these
issues, producing low-light enhanced white-balanced outputs.
It is worth noting that correcting also the color casts in the

TABLE I
COMPARISON ON DATASETS WITH GROUND TRUTH. LEARNING-BASED

METHODS ARE MARKED WITH *. TOP FIVE RESULTS ARE COLOR-CODED:
BEST, SECOND, THIRD, FORTH, FIFTH.

LOL-v1 LOL-v2 LOL-v1 LOL-v2
Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑ Algorithm PSNR↑ SSIM↑ PSNR↑ SSIM↑
Dong et al. [10] 16.72 0.58 17.26 0.52 Wang et al.* [49] 14.38 0.44 13.27 0.45
Wang et al. [50] 16.97 0.59 17.34 0.51 Moran et al.* [34] 15.28 0.47 14.10 0.48
Lee et al. [27] 11.91 0.41 15.37 0.47 Chen et al.* [7] 16.27 0.50 19.80 0.81
Petro et al. [36] 15.37 0.51 13.58 0.40 Li et al.* [28] 21.46 0.80 17.80 0.79
Fu et al. [15] 11.86 0.50 17.34 0.68 Xu et al.* [56] 18.27 0.66 16.85 0.67
Ying et al. [61] 13.86 0.58 17.85 0.65 Jiang et al.* [22] 20.45 0.80 - -
Fu et al. [14] 18.79 0.64 18.73 0.55 Kosugi and Yamasaki* [24] 15.23 0.45 14.05 0.45
Guo et al. [20] 16.76 0.56 15.24 0.47 Jiang et al.* [23] 17.48 0.65 18.23 0.61
Ma et al.* [32] 14.78 0.65 20.28 0.75 Yang et al.* [59] 19.86 0.83 20.13 0.83
Yang et al.* [58] 19.74 0.74 - - Liu et al.* [30] 18.23 0.72 18.37 0.72
Wei et al.* [53] 16.77 0.56 15.47 0.56 Yang et al.* [60] 17.20 0.64 20.06 0.81
Wei et al.* [54] - - 20.79 0.79 Nguyen et al.* [35] 23.97 0.84 - -
Chen et al.* [6] 14.35 0.43 13.24 0.44 Cai et al.* [5] 25.16 0.84 22.80 0.84
Fei et al.* [13] 15.90 0.54 - - Fu et al.* [16] 19.51 0.73 - -
Wu et al.* [55] 21.33 0.84 21.16 0.84 Initial Version [46] 20.46 0.72 19.66 0.70
Zhang et al.* [63] 20.87 0.80 14.47 0.64 Proposed 22.28 0.80 21.58 0.81

TABLE II
COMPARISON ON DATASETS WITHOUT GROUND TRUTH. TOP THREE
RESULTS ARE COLOR-CODED: BEST, SECOND, THIRD. LOWER NIQE

INDICATES BETTER RESULTS.

Algorithm MEF DICM LIME VV

Xu et al.* [57] 6.44 6.12 5.93 11.50
Zhang et al.* [62] 4.55 3.89 4.90 3.82
Hou et al.* [21] 3.40 3.28 4.32 2.60
Guo et al.* [18] 4.93 4.58 5.82 4.81
Wei et al.* [53] 4.93 4.33 5.75 4.32
Proposed 4.24 4.12 4.62 3.80



Input Ground Truth Lee et al. Petro et al. Wang et al. Cai et al. Proposed

Fig. 1. Visual comparison on random examples.

scenes can influence the statistical results. Specifically, ground
truths containing color shifts that our method removes, may
lead to discrepancies in evaluations, even though our approach
successfully enhances the images. We do not white-balance
the ground truths, as doing so would compromise fairness,
especially since other low-light image enhancement methods
evaluate their results against the unaltered ground truths.

We also analyze the effects of using different contrast
enhancement methods on our algorithm’s performance (Ta-
ble III). On both datasets, percentile-based contrast stretching
yields the best results compared to histogram equalization and
CLAHE. Thus, we employ this approach in our algorithm.

As a final note, we discuss the advantages and limitations
of our method. Compared to traditional algorithms, our ap-
proach produces outputs with vivid colors while exhibiting
reduced noise and color shifts (Fig.1). Unlike many traditional
methods, our approach does not rely on solving optimization
problems or requiring heavily tuned parameters [51]. Addition-
ally, unlike fusion-based methods, which need multiple inputs
with varying exposure settings to correct low-light conditions,
our method operates on a single image. This is a significant
advantage in real-world applications, where capturing multiple
images with appropriate settings can be challenging. Another
key strength of our method is its ability to simultaneously
enhance low-light images and correct color casts, eliminating
the need for a separate color constancy step. This integrated
ability is valuable for many computer vision tasks such as
object detection, where low-light conditions and color distor-
tions can affect accuracy. By addressing both challenges in
one step, our method ensures brighter, color-accurate images
while simplifying the pipeline. Compared to learning-based
algorithms, our method offers lower computational complexity
and is independent of training data. However, it remains more
prone to noise than state-of-the-art learning-based models.

TABLE III
STATISTICAL COMPARISON OF DIFFERENT VERSIONS OF OUR METHOD.

LOL-v1 LOL-v2
Approach PSNR↑ SSIM↑ PSNR↑ SSIM↑
w/ Histogram Equalization 17.38 0.66 18.49 0.68

w/ CLAHE 17.82 0.72 19.15 0.75

w/ Percentile-based Contrast Stretching 22.28 0.80 21.58 0.81

V. CONCLUSION

Low-light image enhancement plays a key role in real-
world applications. In this study, we investigate this field
from the perspective of our recently introduced algorithm that
performs color constancy and mimics our behavior on color
assimilation illusions. The proposed approach combines the
local space average color method with our multiresolution
color constancy strategy which uses scale-space within scale-
space computations. We demonstrate that our learning-free
method achieves competitive results across 6 datasets, while
outperforming the traditional methods, and several state-of-
the-art learning-based strategies. To the best of our knowledge,
this is the first approach that is able to perform color constancy
and reproduce our sensation on color illusions, while also
carrying out low-light image enhancement, simultaneously.
Our learning-free method’s key advantage lies in its ability to
enhance and white-balance low-light images without requiring
a separate color constancy step, which makes it particularly
suited for various imaging applications.
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