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Abstract

The human visual system achieves color constancy, allowing consistent color perception
under varying environmental contexts, while also being deceived by color illusions, where
contextual information affects our perception. Despite the close relationship between color
constancy and color illusions, and their potential benefits to the field, both phenomena
are rarely studied together in computer vision. In this study, we present the benefits of
considering color illusions in the field of computer vision. Particularly, we introduce a
learning-free method, namely multiresolution color constancy, which combines insights
from computational neuroscience and computer vision to address both phenomena within
a single framework. Our approach performs color constancy in both multi- and single-
illuminant scenarios, while it is also deceived by assimilation illusions. Additionally, we
extend our method to low-light image enhancement, thus, demonstrate its usability across
different computer vision tasks. Through comprehensive experiments on color constancy,
we show the effectiveness of our method in multi-illuminant and single-illuminant sce-
narios. Furthermore, we compare our method with state-of-the-art learning-based models
on low-light image enhancement, where it shows competitive performance. This work
presents the first method that integrates color constancy, color illusions, and low-light
image enhancement in a single and explainable framework.

Keywords: Computational Color Constancy, Color Assimilation Illusions, Low-light Image
Enhancement, Multiresolution Color Constancy
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Color Illusion Target Region

Fig. 1 Example color assimilation illusion (Bach Last accessed: 01.04.2025). We perceive the colors of the target
region in the color assimilation illusion as orangish and purplish although its reflectance is red which can be easily
identified when the context is removed.

1 Introduction

Our visual system is evolved in a way that it can perceive distances, adapt our vision to
low-light environments, and differentiate between colors by discounting the effects of the
environmental context unconsciously (Zeki 1993). Especially, the last ability is interesting
when we consider the fact that color is not a physical property of objects but rather the result
of complex mechanisms of the human visual system (Zeki 1993). For instance, when we
enter a room illuminated by a yellowish light source we can easily recognize the true color of
a red apple as red instead of yellow. This ability, called color constancy, is usually referred
to as a phenomenon since the neural mechanisms underlying it are not yet fully understood
even though they have been widely studied for decades (Zeki 1993; Gegenfurtner 1999;
Brainard and Radonjic 2004; Ebner 2007; Hurlbert 2007). However, in certain situations, the
environmental context can mislead our visual system, causing the colors we perceive to dif-
fer significantly from the object’s actual physical reflectance. One of the notable examples
deceiving our visual system is the phenomenon called color assimilation illusions (Fig. 1). In
these illusions, the colors of the target region’s local neighbors, i.e., context, affect our per-
ception so that the colors of the target region shift towards that of its local neighbors. This
emphasizes that local features, that is, the average color of a scene, are key attributes of our
perception (Linnell and Foster 1997; Gegenfurtner 2003).

Even though we can perform color constancy, our perception is deceived by color illu-
sions. On the other hand, machine vision systems can easily determine the actual colors of
the illusions, yet they cannot perform color constancy without further computations. Machine
vision systems need computational color constancy to identify the true colors of objects
under different colored light sources since the captured image is a result of the interaction
between the camera sensors’ response and the illuminant of the scene, e.g., without compu-
tational color constancy, a white object illuminated by yellowish light would be captured as
yellow (Ulucan et al. 2024c). Thus, computational color constancy allows us to work with
accurate reflectance values. The algorithms that are developed in the field of color constancy
are helpful in the area of digital photography and also for various computer vision tasks such
as object detection, and object classification (Ebner 2007).

Color constancy is not only studied in computer vision, but it is also extensively
investigated alongside color illusions in computational neuroscience (Shapiro et al. 2018;
Gegenfurtner 1999). Even though both fields acknowledge the strong link between these two
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visual phenomena (Marini and Rizzi 2000; Corney and Lotto 2007; Gomez-Villa et al. 2019;
Ulucan et al. 2024b), their motivations for investigating them differ. In computational neuro-
science, both concepts serve as beneficial tools to investigate the underlying mechanisms of
human visual information processing (Marini and Rizzi 1997, 2000; Blakeslee and McCourt
2004; Zeman et al. 2015; Mitra et al. 2018; Corney and Lotto 2007; Hirsch and Tal 2020;
Kubota et al. 2021; Gomez-Villa et al. 2022). Despite the extensive research in this field,
we still do not know how the human visual system performs color constancy while being
deceived by color illusions. A deeper understanding of the neural mechanisms would lead
to a more accurate model of human color perception (Gomez-Villa et al. 2025). This might
lead to an explainable model that, in turn, could enable significant advancements in com-
puter vision applications and digital photography, particularly for algorithms inspired by the
capabilities of the human visual system. However, despite the potential benefits of investigat-
ing these phenomena together, it is quite surprising that in computer vision, they are rarely
studied simultaneously (Gomez-Villa et al. 2019; Ulucan et al. 2024b, 2022a). Motivated by
the lack of research in this field, we began investigating color illusions from the perspective
of computational color constancy for the first time in computer vision. In our studies, we
demonstrated that indeed, these illusions can provide valuable cues for enhancing the perfor-
mance of color constancy methods (Ulucan et al. 2024b, 2022a). The results of our studies
motivated us to develop a single framework that can address both phenomena simultaneously,
whose importance is highlighted in computational neuroscience studies (Corney and Lotto
2007). Therefore, in our recent study, we developed a learning-free method, which is the
first computational color constancy algorithm that can address both visual phenomena with
a single approach, without focusing on developing a method explicitly for one phenomenon
or the other (Ulucan et al. 2024a). While developing our method, we combined the best of
both worlds by considering the observations from computational neuroscience and building
on the white-balancing experience of computer vision. In short, we designed a method that
purely relies on low-level processing, utilizing scale-space computations and space average
color. Moreover, in our comprehensive experiments, we demonstrated that our learning-free
method can achieve competitive results when compared with state-of-the-art models on dif-
ferent multi-illuminant color constancy benchmarks. These results highlight the importance
of taking inspiration from the human visual system and classical computer vision methods to
develop simple and explainable algorithms that can compete or even surpass learning-based
approaches.

In this study, we extend our previous work (Ulucan et al. 2024a) by offering new discus-
sions and experiments on additional datasets, specifically single-illuminant benchmarks, to
demonstrate that our method performs effectively not only in multi-illuminant cases but also
in single-illuminant scenarios. Furthermore, we slightly modify our method to test it for a
new application, low-light image enhancement (Ulucan et al. 2025). With this extension, we
present the generalizability of our approach in both different illumination settings and distinct
computer vision tasks.

Overall, this paper highlights the following contributions:

• We introduce the first computational color constancy method that addresses both color
constancy and color illusions within a single framework by integrating insights from
computational neuroscience and computer vision.
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• We propose a learning-free method that purely relies on low-level processing, including
scale-space computations and the modified version of the local space average color method.

• We present that our method is effective not only in multi-illuminant cases but also in single-
illuminant scenarios, thereby we show its applicability across various lighting conditions.

• We apply our method to the task of low-light image enhancement and evaluate its perfor-
mance on two widely used benchmarks, comparing it against 22 learning-based methods.
This demonstrates its effectiveness in low-light conditions and makes it the first method
capable of tackling three distinct computer vision tasks within a single approach, further
highlighting its robustness and adaptability beyond its original scope.

This paper is organized as follows. We provide a brief introduction to the field of color
constancy in Sec. 2. We detail the proposed method in Sec. 3. We present our comprehensive
experimental discussion in Sec. 4. Lastly, we give a brief summary of the study in Sec. 5.

2 Computational Color Constancy

In the area of color constancy, we generally work with Lambartian surfaces, which reflect light
uniformly in all directions. Additionally, we assume that the capturing device consists of three
distinct sensors, each of which responds to a different segment of the visible spectrum, which
is commonly categorized as short-, middle-, and long-wavelengths. Under these assumptions,
the captured image I can be mathematically modeled in terms of the irradiance E falling
on the camera sensors, and the spectral sensitivity function S that characterizes the sensor’s
response to incoming light at a given wavelength:

I(x, y) =

∫

w
E(x, y;ω)Si(ω)dω, (1)

where (x, y) denotes the spatial coordinates, ω represents the wavelength within the visible
spectrum w, and i → short, middle, long denotes the specific sensor channel.

Since the irradiance E reaching the camera’s sensors depends on the reflectance
R(x, y;ω) of the scene, the light source L(x, y;ω), and the scaling factor G(x, y) that
represents the scene’s geometry, it can be mathematically formulated as:

E(x, y;ω) = G(x, y)R(x, y;ω)L(x, y;ω), (2)

where the term G(x, y) is typically represented as cosε, with ε being the angle between the
surface normal and the illumination direction.

Therefore, by using the Eqns. 1 and 2, any image can be mathematically expressed as
follows:

I(x, y) = G(x, y)

∫

w
R(x, y;ω)L(x, y;ω)Si(ω)dω. (3)

Generally, in computational color constancy, the main objective is to estimate the color
of the illuminant. Despite the simplifications introduced by the Lambertian image formation
model, the problem remains under-constrained due to the unknown sensor characteristics of
the capturing devices and varying illumination conditions in real-world settings. Therefore, to
further relax the challenging nature of the problem, we commonly rely on additional assump-
tions. For instance, we assume that the scene is illuminated by a uniform light source, the
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camera sensors’ responses are narrow-band (i.e., approximating Dirac delta functions), and
the term G does not significantly impact the estimation of the illuminant (Ebner 2007). Con-
sequently, we can model a color cast image as being uniformly scaled by the light source, and
express it as the element-wise product of the (shaded) reflectance and the global illuminant L
as follows:

I(x, y) = R(x, y) · L. (4)
Under all of these assumptions, we have a simplified yet effective image formation model

for illuminant estimation, forming the basis of many computational color constancy studies.
Using traditional methods or machine learning approaches, we can estimate the illuminant L
and eliminate its effect, producing white-balanced images that appear as if they were captured
under neutral lighting, thereby allowing more accurate processing of the color features in the
scene.

Numerous single-illuminant color constancy algorithms have been introduced to the
literature which can be broadly grouped into two categories: traditional methods and learning-
based models. Traditional approaches rely on image statistics, with notable examples being
the white-patch Retinex and the gray world algorithm (Land 1977; Buchsbaum 1980). The
white-patch Retinex method considers the neuroscientific findings indicating that our visual
system might be discarding the effects of the illuminant by relying on the highest luminance
patch (Land 1977). Therefore, it computes the color vector of the light source by taking the
maximum responses of the image channels individually. The gray-world method takes into
account that space average color might play a crucial role in our visual system (Buchsbaum
1980). Thus, it computes each image channel’s mean separately to estimate the illuminant.
As methods inspired by observations of the human visual system tend to prove effective,
various algorithms based on these methods, and other findings on our visual system have
been proposed to estimate the illuminant (Finlayson and Trezzi 2004; Van De Weijer et al.
2007; Gijsenij et al. 2009; Joze et al. 2012; Cheng et al. 2014; Qian et al. 2018, 2019; Ulu-
can et al. 2023a,b; Gao et al. 2014, 2015; Zhang et al. 2016; Gao et al. 2019). On the other
hand, learning-based models (Afifi and Brown 2019; Laakom et al. 2019; Afifi and Brown
2020a; Afifi et al. 2021, 2022; Domislović et al. 2022; Kim et al. 2025) mainly relying on
neural networks have a tendency to achieve higher scores on well-known benchmarks com-
pared to traditional algorithms. Yet, it is reported that in case learning-based models are given
scenes with different statistical distributions and/or images taken with capturing devices hav-
ing unknown specifications they may experience a decline in their performance (Gao et al.
2017; Qian et al. 2019; Ulucan et al. 2022b). As we explicitly demonstrated in our pre-
vious study (Ulucan et al. 2022b) and as pointed out in a recent work of Buzzelli et al.
(2023), several factors contribute to this drop in performance. First of all, widely used
datasets are generally gathered using devices with similar sensor response characteristics.
Secondly, the illumination conditions in most benchmarks are quite uniform, e.g., lighting at
the edges and/or outside of the color temperature curve is rarely taken into account. Lastly,
learning-based methods generally assume that the training and test sets have comparable
properties.

As aforementioned, the assumption of a single light source present in the environment
can be efficient, yet this assumption frequently fails in practical scenarios due to shadows,
multiple light sources, and interreflections (Ershov et al. 2023). On the other hand, multi-
illuminant color constancy algorithms, which consider spatially varying illumination, may
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Fig. 2 Flowchart of the proposed method. Our approach simultaneously addresses three different tasks: (i) color
constancy, (ii) color assimilation illusions, and (iii) low-light image enhancement through the multiresolution color
constancy strategy, which performs scale-space within scale-space computations.

address these challenges, however, such methods are considerably rarer compared to those
assuming the presence of a single illuminant (Ebner 2009; Bianco et al. 2017; Afifi et al.
2022; Ulucan et al. 2023c).

While most of the aforementioned methods focus on estimating the illuminant from linear
images to achieve color constancy, there are also approaches that aim to generate canonical
images for sRGB images, without the need to explicitly compute the illuminant or rely on
linear images (Afifi et al. 2019; Afifi and Brown 2020b,a; Afifi et al. 2022; Kınlı et al. 2023;
Serrano-Lozano et al. 2025). These methods utilize techniques such as nonlinear color map-
ping, image fusion, and deep neural networks to produce white-balanced images directly from
the input scene, without requiring an explicit illuminant estimation step (Serrano-Lozano et al.
2025).

3 Proposed Method

As mentioned in Sec. 1, our method is designed to address two visual phenomena, namely,
color constancy and color illusion perception. It is the first computational color constancy
study that effectively addresses these computationally opposing phenomena while also
demonstrating strong performance in a different computer vision task, i.e., low-light image
enhancement (Fig. 2).

The proposed method is based on key observations in human color processing. Studies
indicate that the information necessary for illumination estimation is present in the stimulus
at the appropriate scale (Shapiro and Lu 2011; Shapiro et al. 2018). Additionally, the effects
of the illuminant are primarily captured in the low spatial frequency components, meaning
that removing blurry content from images can produce outputs that closely align with human
perceptual experience (Shapiro and Lu 2011; Dixon and Shapiro 2017; Shapiro et al. 2018).
Furthermore, as demonstrated in Land’s experiments (Land 1974), the space average color
of the scene plays a critical role in human color processing, particularly in the context of
color constancy, a concept further supported by prior studies (Buchsbaum 1980; Linnell and
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Foster 1997; Ebner 2007). It is important to emphasize that although we took inspiration
from the human visual system, we do not claim that our approach perfectly models it, as
its mechanisms are still not fully understood. In short, our goal is not to entirely replicate
the operations of the human visual system but to develop a method for computational color
constancy that also accounts for color assimilation illusions from the perspective of computer
vision.

In this section we first revisit the local space average color algorithm while also explaining
our modification, and then we detail our method.

3.1 Revisiting Local Space Average Color

In our method, we use the local space average color algorithm proposed by Ebner (2004)
which uses only low-level processing and aligns closely with mechanisms in the human visual
system. We consider this algorithm in our method due to various reasons. First of all, stud-
ies in behavioral experiments and computational neuroscience suggest that local contrasts
between neighboring cones provide key cues for human color constancy (Song and Veltz
2019; Gegenfurtner 2003; Foster and Nascimento 1994). Additionally, research highlights
that the average color within a local spatial region plays a crucial role in color perception
and color constancy (Linnell and Foster 1997; Gegenfurtner 2003; Ebner 2004). Furthermore,
Land’s experiments (Land 1974) emphasize the significance of spatial interactions in color
perception, and show that color appearance is influenced by surrounding context. In these
experiments, Land showed that when individuals focused solely on the center of the colored
patches in the Mondrian image, they perceived the patches as grayish-white. However, when
observing the Mondrian image as a whole, the observers were able to correctly identify the
true reflectance of the patches.

The local space average color method determines the color of light sources through an
iterative approach as follows (Ebner 2009):

a→i(x, y) =
1

| N(x, y) |
∑

(x→,y→)↑N(x,y)

ai(x
→, y→) (5)

ai(x, y) = Ii(x, y)p+ a→i(x, y)(1↑ p), (6)

where a is the space average color, N represents a group of neighborhood pixels, p adjusts the
size of the area where the local space average color is calculated, e.g., a small p value refers
to a large area, and subscript i corresponds to the color channels of the image, i → {r, g, b}.

This iterative approach is effective, yet it can be computationally expensive due to its
convergence time. To reduce the run-time while maintaining similar accuracy, a convolution
operation can be applied to compute the space average color as follows:

ai(x, y) = k(x, y)

∫ ∫
Ii(x, y)g(x↑ x→, y ↑ y→)dx→dy→, (7)

where i denotes the color channels of the image, i → {r, g, b}, and the scaling factor k is
determined such that

k(x, y)

∫ ∫
g(x→, y→)dx→dy→ = 1, (8)
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where g is the two-dimensional Gaussian kernel given as 1
2ωε2 exp(↑x2+y2

2ε2 ). ϑ is the scale of
the kernel, which is commonly set as ϑ = ϖ(max{h,w}/2), where h and w are the rows and
columns of the image, respectively. Since the local space average color algorithm assumes
that the scene’s average color is achromatic which is only valid when the scene includes
a broad spectrum of colors (Ebner 2009), it is essential to select a ϑ-value making certain
that the local averaging process spans an adequately large area containing a diverse range of
objects with different reflectance properties. Therefore, we use a larger ϑ in scenes with a
single light source, and a smaller ϑ in scenes containing multiple light sources.

Once we obtain the space average color of the scene, we compute the reflectance o of the
input as follows:

o(x, y) ↓ I(x, y)

fa(x, y)
, (9)

where f represents a uniform scaling factor employed across all color channels and is fixed
at 2, assuming that the objects are oriented perpendicularly to the capturing device (Ebner
2009).

To further improve the efficiency of the algorithm, a variant of the method that utilizes
depth information while performing local averaging was introduced by Ebner and Hansen
(2013). Their main motivation is based on the observation that distinct objects within a scene
can lead to significant discontinuities in depth. Hence, regions separated by substantial differ-
ences in depth should be handled independently during the estimation of the illuminant. While
depth information can enhance the performance of the algorithm, the unavailability of depth
maps and potential noise in the range data can reduce the efficiency of the illumination estima-
tion task, thereby limiting the method’s usability. Therefore, while we adopt the fundamental
principle established in the work of Ebner and Hansen (2013), we prefer to use the gradients
of the scene instead of utilizing depth information. We substitute depth with gradients since
it is known that significant depth discontinuities cause large gradient changes (Yucer et al.
2016). In order to maintain the consistency of local information and respect edge details, we
apply an edge-aware smoothing filter (He et al. 2012) to the local estimates a. Since guided
filtering operates under the assumption that the manipulated image locally resembles a linear
transformation of the guidance image (He et al. 2012), this additional processing step helps
us to maintain gradient variations in the local estimations based on the input image.

3.2 Multiresolution Color Constancy

As discussed in Sec. 1, the proposed method is designed to tackle both computational
phenomena, i.e., generating canonical images from color cast scenes while simultaneously
mimicking our perception of color assimilation illusions by being deceived by them. Achiev-
ing these computationally opposing tasks within a single pipeline is made possible by our
novel white-balancing strategy, which uses scale-space within scale-space computations, a
technique we term multiresolution color constancy.

Such an approach is essential because directly applying Eqn. 9 to scale the pixel inten-
sities of the input scene based on their local estimates would effectively discount the effects
of the light source and achieve white-balancing, however, this would come at a cost of fail-
ing to replicate our perception of color assimilation illusions within a single framework. For
instance, as illustrated in Fig. 3, the multi-illuminant color constancy algorithms GI (Qian
et al. 2019) and LSAC (Ebner 2004), despite their ability in producing visually compelling
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Input Illusion Target Region GI LSAC Ours

Fig. 3 Brief visual investigation of color assimilation illusions using multi-illuminant color constancy methods and
the proposed approach. While white-balancing algorithms focus on mimicking our ability of color constancy, their
illumination estimation strategies are insufficient for replicating our perception on illusions. In contrast, the proposed
method can address both computationally opposing phenomena.

results for color constancy, struggle to accurately capture the effects of color assimilation
illusions, hence fail to mimic our sensation on illusions. In contrast, our proposed strategy
successfully handles both color assimilation illusions and color constancy within a single
computational framework.

Our method supports both linear RGB and sRGB images. In case of an sRGB image is
provided to the algorithm, we perform gamma correction to preserve the linear relationship
between the pixel values (Ebner 2007). However, it is important to stress that this step repre-
sents an oversimplification, as it neglects the non-linearity introduced by most cameras before
obtaining the final sRGB images, as discussed by Afifi et al. (2019).

Following the preprocessing stage, we find the number of pyramid levels, denoted as nL,
based on the image resolution, where nL = ↔log2(min(h,w))↗↑2, with h and w representing
the height and width of the image. We exclude the two coarsest layers of the image pyramid
because locality is negatively affected at these levels. We prefer to adaptively choose the
number of scales since images may vary in resolution, and fixed settings could affect the
performance negatively. Once the number of scales is determined adaptively, we obtain the
representations of the input image at each level. Additionally, for each image representation
in the pyramid, we obtain the pixel-wise estimations using the modified version of the local
space average color method. One might question why we compute the local space average
color at each scale, rather than computing it only at the finest level and then propagating
the estimates through the pyramid. While this approach would reduce the complexity of the
method, it introduces a significant drawback: it leads to degradation of the local estimates,
particularly at coarser scales. As demonstrated in Fig. 4, carrying the estimation from the
finest scale to the coarser levels distorts the locality. This issue is less pronounced when pixel-
wise estimations are obtained independently at each scale, benefiting both color assimilation
illusions and color constancy. For instance, as shown on the first row of Fig. 4, local estimates
at the coarsest scale are considerably more distorted when the local space average color is
computed only at the finest scale. In contrast, computing the pixel-wise estimates at each
scale separately preserves key details, such as the sharp transitions caused by illumination
changes, like brighter regions and shadows, which enhances color constancy performance
(for more details, see Sec. 4.2.3). Thus, we obtain the pixel-wise estimations of the scene at
each pyramid level to maintain as much locality as possible. As demonstrated in Fig. 4, this
approach is crucial, particularly for handling color assimilation illusions and multi-illuminant
color constancy effectively.
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Fig. 4 Illustration of scale-space computations. (Left-to-right) The input image, the estimation computed only at
the finest scale and propagated through the pyramid, and the estimations computed independently at each scale. In
the estimates, the top-left image shows the finest scale, while the bottom-right image represents the coarsest scale.
Computing the estimations at each scale separately preserves details more effectively.

Once the representations of the input scenes and their corresponding local estimates are
obtained, we apply our multiresolution color constancy method. Let l represent a pyramid
level, where l → {1, ..., nL}. At each level l , we generate a Gaussian pyramid for the local
estimates, denoted as G{al(x, y)}, and a Laplacian pyramid for the input scene, denoted as
L{Il(x, y)}. The number of scales, S , for both pyramids is determined according to the image
resolution, as described earlier.

After forming both pyramids, we obtain the (shaded) reflectance at scale s using an
operation similar to the one described in Eqn. 9:

P{ol(x, y)}s =
L{Il(x, y)}s

G{al(x, y)}s
, s = 1, 2, . . . ,S. (10)

This operation is applied across all scales in {1, ...,S} to produce a resulting pyramid
P{ol(x, y)}. Afterwards, we collapse this pyramid to obtain an output for the l -th level. This
procedure is repeated for each level in {1, ..., nL}, which generates a pyramid containing the
(shaded) reflectances at all levels. Finally, we collapse this pyramid again to produce a single
output (shaded) reflectance o.

As a final stage, we enhance the luminance component of our result. The main motiva-
tion for this process is to further mimic the capabilities of the human visual system from the
perspective of computer vision. The human visual system adjusts its sensitivity to the sur-
rounding luminance by expanding its response range (Shapiro et al. 2018). This adaptation
can be mimicked in computer vision through histogram equalization, as it allows modification
of the statistical distribution of an image dimension to maximize the number of distinguish-
able levels along that dimension (Shapiro et al. 2018). To mimic this aspect of the visual
system, we adjust the perceived luminance of the scene by first extracting a luminance layer
from the input image. To obtain this layer, we first compute the mean value for each color
channel and scale the image accordingly, i.e., we apply the gray world assumption (Buchs-
baum 1980). Then, we convert the scaled RGB image to CIELAB color space using the D65
reference white point (we observed that using alternative white points has a negligible effect
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on the results). Then, we perform histogram equalization (Zuiderveld 1994) on the L↓ compo-
nent of the image to enhance its contrast. The resulting L↓ component becomes the luminance
layer, which we merge with the a↓ and b↓ color channels of the obtained (shaded) reflectance.
After merging these components, the resulting image is transformed back to the RGB color
space, which becomes the final output image of the proposed method.

3.3 Application to Low-Light Image Enhancement

Scenes captured under insufficient lighting are referred to as low-light images which mostly
contain issues such as lack of sharpness, color distortion, narrow gray range, noise, and lower
contrast levels (Wang et al. 2020; Rasheed et al. 2023). The improvement of these images is
important for applications such as autonomous navigation, medical diagnostics, and security
monitoring (Rasheed et al. 2023).

To tackle the challenges of low-light conditions, both hardware and software solutions
have been introduced. While hardware approaches can be costly and require high precision
in manufacturing, software methods offer a more flexible and economical alternative (Wang
et al. 2020). In recent years, various enhancement techniques relying on learning-based mod-
els have been proposed to overcome the challenges of the field (Wei et al. 2018; Chen et al.
2019; Zhang et al. 2019; Wang et al. 2019; Moran et al. 2020; Li et al. 2020; Xu et al. 2020;
Kosugi and Yamasaki 2020; Jiang et al. 2021; Liu et al. 2021; Yang et al. 2021; Cai et al.
2023).

To further present the usability of our algorithm beyond its original scope, we investi-
gate its performance in the field of low-light image enhancement. During our experiments
we realized that our color constancy algorithm performs well on enhancing low-light images
(results are provided in Sec. 4.3.2). However, we observed that simple modifications made
without changing the multiresolution color constancy approach can further improve its per-
formance. Particularly, we slightly modified the extraction of the luminance layer by using a
percentile-based contrast stretching approach instead of histogram equalization, to improve
its performance even further.

In the extraction of the luminance layer, we apply the gray-world algorithm (Buchs-
baum 1980) to the input scene. Subsequently, we transform this white-balanced image into
the CIELAB color space where we extract the luminance component L↓. Then, we adopt a
contrast stretching method based on percentiles to improve the contrast of the extracted lumi-
nance component L↓, while reducing the impact of extreme values. First, we determine the
0.5th and 99.5th percentiles of the intensity distribution of L↓. We set values below the 0.5th
percentile to the minimum intensity, and values more than the 99.5th percentile to the max-
imum intensity. We apply these same thresholds to the L↓ channel of the output (shaded)
reflectance o to obtain a consistent enhancement in contrast. Then, we average the improved
L↓ channels of the input and the output reflectance. Lastly, we merge the averaged lumi-
nance with the a↓ and b↓ chromaticity channels from the output reflectance, and transform
the resulting image into the RGB color space to generate our final output.

4 Experiments and Discussion

We analyze the performance of our method on the different tasks by utilizing various datasets
and metrics. In Sec. 4.1, we provide our investigation on color assimilation illusions, while in
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Fig. 5 The perception of a color illusion is strongly influenced by the characteristics of the inducers. As shown in
the first column, an image with a low inducer frequency (with thick inducers) hardly evokes an illusion sensation.
However, when the frequency of the inducers is increased (the thickness of the inducer is reduced) as demonstrated
in the second column, the illusion sensation becomes more apparent.

Sec. 4.2 we present our outcomes on color constancy. Then, in Sec. 4.3, we demonstrate the
performance of our method for the task of low-light image enhancement.

4.1 Experiments on Color Illusions

Before starting our discussion on color illusions, we detail our illusions set which we utilize
in our experiments, and then we provide our visual results on color assimilation illusions.

4.1.1 Experimental Setup for Color Illusions

The strength of the illusion we perceive depends on the frequency of occurrence of the
inducer. As presented in Fig. 5, if we decrease the inducer’s frequency of occurrence, the illu-
sion sensation almost vanishes. However, when we increase the frequency of the inducers, we
obtain a strong illusion effect. While creating our set, we consider this impact of the inducers,
hence we obtain/gather illusions having different frequencies and thicknesses. Moreover, we
use a wide range of shapes and colors. Consequently, we create a set that considers images
having different shapes, colors, thicknesses and frequencies, which spans a spectrum from
those which subtly evoke an illusion effect to those that strongly convey an illusion sensation
(Fig. 6).

It is also important to highlight how we analyze our results on the illusions. Studies gener-
ally follow two approaches to analyze an algorithm’s ability to replicate our sensation. They
either visually analyze the target region, the region of interest where we perceive the sensa-
tion, or examine intensity changes within the target region. However, neither method provides
a statistical investigation, as no error metric or dataset with ground truths exists for color
assimilation illusions. This lack of standardized quantitative evaluation remains a key chal-
lenge of this field. Yet developing metrics and datasets is also a complex issue, especially
when we consider the individual differences of the sensory processing in human color vision,
which is highlighted in several studies (Emery and Webster 2019; Shi et al. 2024). Even
among the observers with normal vision, the cone sensitivities vary from individual to indi-
vidual, making it harder to create a dataset or metric for color illusions. Furthermore, even if
multiple human subjects perceive a target region as green, the exact shade of the color may
differ for each person. Due to these challenges, many studies rely on intensity analysis or
visual inspection (Marini and Rizzi 2000; Funt et al. 2004; Corney and Lotto 2007). In this
study, we assess our algorithm’s performance through visual inspection of the target regions.
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Fig. 6 Example images from our illusion set. The images on the first row are created by ourselves, while the remain-
ing images are courtesy of Akiyoshi Kitaoka, Michael Bach, and David Novick, respectively.

4.1.2 Experimental Results for Color Illusions

We provide our algorithm’s results on a variety of color illusions featuring different shapes
and color combinations in Fig. 7. We present estimation results at multiple scales and also
corresponding target outputs. As demonstrated in Fig. 7, our algorithm is deceived by various
color illusions. For instance, in the illusion on the fifth row of Fig. 7, it mimics our perception
by providing an output target where the disks are purple and green, while their true reflectance
is bluish as presented in the input target. Furthermore, in the illusion at the bottom where we
perceive the target region as if it has reversed colors, i.e., blue as green and green as blue, it
accurately mimics our sensation.

As seen in the estimates we provide for the different scales, coarser levels exhibiting
a stronger illusion effect can be assigned greater importance. This suggests that since the
necessary information for accurately estimating the illuminant exists at the appropriate scale
within the stimulus (Shapiro and Lu 2011; Shapiro et al. 2018), the same may apply to color
illusions, which implies that there is a connection between color assimilation illusions and
color constancy. Thus, we should further explore this relationship.

4.2 Experiments on Color Constancy

In this section, first, we present our experimental setup where we provide an overview of
widely used color constancy datasets and commonly adopted error metrics. Afterwards, we
present our results on 5 different benchmarks that contain scenes with single and multiple
illuminants.
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Input Image Input Target Estimates in Scales Output Target

Fig. 7 Visual results of the proposed method applied to color illusions. (Left-to-right) The input image, the target
region of the input, the estimations at each scale, and the target area of the proposed method. As our visual system,
our algorithm is deceived by various color illusions having different inducer frequencies/thicknesses, colors, and
shapes. It is important to note that the colors in the output target may appear darker than in the input image due to
the black background in the output target. Also, to accurately assess the color illusions, we would like to emphasize
the importance of zooming in and focusing on each image individually. Viewing the image at a small size or from
a distance may create a false impression that there is an illusion effect while there is none or only a weak one.
Additionally, since peripheral vision is naturally blurred, i.e., locally disordered (Koenderink and van Doorn 2000),
even subtle illusions may appear stronger due to color shift of the target area towards that of its surrounding pixels.
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4.2.1 Experimental Setup for Color Constancy

We use 5 benchmarks, namely, the Multiple Illuminant and Multiple Object (MIMO)
dataset (Beigpour et al. 2013), the Mixed-Illumination Test Set (Afifi et al. 2022), the Ren-
dered WB Dataset (Set 2) (Afifi et al. 2019), the ColorChecker RECommended dataset (Hem-
rit et al. 2018), and the INTEL-TAU dataset (Laakom et al. 2021) in our evaluations.

The MIMO dataset (Beigpour et al. 2013) includes 78 images across two different sets:
the Real-World set and the Laboratory set. While the former contains 20 complex scenes, the
latter consists of 58 much simpler scenes. The MIMO dataset provides ground truth pixel-
wise illumination maps for each input scene, making it particularly useful for algorithms
that output pixel-level illumination estimates rather than just a single vector representing the
color of the light source. The Mixed-Illuminant Test Set (Afifi et al. 2022) is rendered by
computer graphics, hence, the ground truths are not biased by camera sensor specifications.
The synthetic dataset contains a total of 150 images with 30 varying scenes. Each scene
is rendered with 5 different mixed illumination conditions at different color temperatures,
and for each scene, the ground truth white-balanced image is provided. The Rendered WB
Dataset (Set 2) (Afifi et al. 2019) contains over 2, 881 images captured from various cameras.
For every image exhibiting incorrect white-balance, there is a corresponding correctly white-
balanced sRGB image rendered in a standard picture style.

Apart from these datasets we provide results on 2 single-illuminant datasets that were
not included in our previous study (Ulucan et al. 2024a). The ColorChecker RECommended
dataset (Hemrit et al. 2018) is the updated version of the dataset introduced by Gehler et
al. (Gehler et al. 2008) which was revised after concerns were raised about the accuracy of
the ground truths. It includes a total of 568 scenes. Overall, the dataset consists of 229 close-
up shootings, 254 indoor scenes, and 85 outdoor scenes, all taken with two different devices:
the Canon 1D and Canon 5D (Buzzelli et al. 2023). Alongside the images, for each scene, the
actual color vector of the single light source is also provided. It is important to stress that while
this benchmark is widely adopted in many studies, the revised version still contains some
minor issues related to illumination conditions. As first pointed out by Cheng et al. (2016) and
later by Qian et al. (2019), the benchmark includes 66 images illuminated by two different
light sources. The INTEL-TAU dataset (Laakom et al. 2021) is one of the largest bench-
marks that contains 7, 022 images, including 3, 229 close-up images, 1, 466 indoor scenes,
and 2, 327 outdoor scenes (Buzzelli et al. 2023). The INTEL-TAU dataset includes images
captured by three different cameras both DSLR and mobile phone devices: the Sony IMX135,
Canon 5DSR, and Nikon D810. All the images in this dataset are preprocessed, meaning that
their black level is calibrated, they are in linear space, and all sensitive data, such as faces and
vehicle license plates, is masked out. On the other hand, this dataset contains several sets with
scenes where the calibration object, i.e., a color checkerboard, is unmasked. When evaluating
color constancy algorithms, it is crucial to mask out the calibration object from the scene, as
these artificial objects can bias the performance of the algorithms, thereby preventing a fair
evaluation. By removing calibration objects, the algorithms will predict the color vector of the
light source based solely on the scene content, rather than relying on artificial or controlled
elements that might not be present in real-world scenarios. For this reason, in this study, we
only use the images from the “field1” and “field3”, as the calibration object is unmasked in
other sets, and the masks indicating the position of the calibration object are not provided.
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We would like to highlight that, for the experiments we perform on the ColorChecker
RECommended and the INTEL-TAU datasets, in optimal conditions, we need pixel-wise
white-balanced ground truths to evaluate our algorithm which relies on local computations.
However, both of these benchmarks provide only single RGB vectors for the illuminant as
ground truths. Therefore, we use the same RGB vector for each spatial location in the image
by noting that shadows, reflections, and sometimes the presence of more than one illuminant
in the scenes which is reported in many studies (Cheng et al. 2016; Qian et al. 2019; Ershov
et al. 2023) might affect the statistical evaluation of our algorithm.

In order to provide quantitative comparisons by following the common practice, we
report the mean and median (Q2) of the angular errors for the MIMO dataset and the mean,
median, best-%25 (Q1), and worst-%25 (Q3) of the angular errors for the Rendered Mixed-
Illumination Test Set, Rendered WB (Set 2), ColorChecker RECommended, and INTEL-TAU
datasets. Alongside the angular error, we also provide the mean, Q1, Q2, and Q3 of the
→E2000 (Sharma et al. 2005) scores for the Rendered Mixed-Illumination Test Set and Ren-
dered WB (Set 2). The learning-based models are highlighted with an asterisk (*) in the tables.
We would like to note that Single-Scale denotes the version of our method that operates on a
single scale, i.e., the version that does not perform multiresolution color constancy, thus does
not address color illusions.

Table 1 Statistical results on MIMO dataset. The results are reported based on our recent
publication (Ulucan et al. 2024a). The top results are highlighted by using color coding: best,
second-best, third-best best, second-best, and third-best.

Real-World Laboratory

Algorithms Mean Q2 Mean Q2

max-RGB (Land and McCann 1971) 6.8° 5.7° 7.8° 7.6°
GW (Buchsbaum 1980) 5.3° 4.3° 3.5° 2.9°
SoG (Finlayson and Trezzi 2004) 6.2° 3.7° 4.9° 4.6°
1st - GE (Van De Weijer et al. 2007) 8.0° 4.7° 4.3° 4.1°
WGE (Gijsenij et al. 2011) 7.9° 4.1° 4.4° 4.0°
GP (Qian et al. 2018) 5.8° 5.0° 13.3° 12.6°
BBCC (Ulucan et al. 2023a) 4.8° 3.6° 3.1° 2.8°
BIO-CC (Ulucan et al. 2022a) 5.0° 4.3° 4.2° 4.1°
Gijsenij et al. with maxRGB (Gijsenij et al. 2011) 4.2° 3.8° 5.1° 4.2°
CRF with max-RGB (Beigpour et al. 2013) 4.1° 3.3° 3.0° 2.8°
Akazawa et al. with max-RGB (Akazawa et al. 2022) 4.1° 3.4° 2.6° 2.2°
CCATI (Hussain et al. 2019) 3.8° 3.8° 2.6° 2.6°
GI (Qian et al. 2019) 3.9° 3.4° 2.7° 2.2°
C3AE↑ (Laakom et al. 2019) 12.4° 12.3° 13.9° 14.1°
SIIE↑ (Afifi and Brown 2019) 5.9° 5.1° 9.0° 9.0°
C5↑ (Afifi et al. 2021) 11.9° 13.0° 7.0° 7.1°
CNN↑ (Bianco et al. 2017) 3.3° 3.1° 2.3° 2.2°
GAN↑ (Das et al. 2021) 3.5° 2.9° - -
Single-Scale 4.9° 4.2° 2.7° 2.5°
Proposed 3.2° 2.6° 2.7° 2.3°
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4.2.2 Experimental Results for Color Constancy

We present the performance of our method on MIMO dataset in Table 1. Our algorithm
presents the best results on the Real-World set, while it performs competitively on the Lab-
oratory set. The scenes in the Real-World set include higher complexity compared to the
Laboratory set making it more challenging which is also reflected to the scores of the algo-
rithms (Qian et al. 2019). Most of them have a lower angular error on the Laboratory set. In
Fig. 8, we visually compare our method against GI (Qian et al. 2019), and SIEE (Afifi and
Brown 2019) on the MIMO dataset. Our algorithm produces fewer artifacts, while specular-
ity, which is a challenging feature for color constancy approaches, may slightly decrease its
performance.

In Table 2, we provide the scores on the Mixed-Illumination Test Set, and the Rendered
WB (Set 2). On both benchmarks, our simple yet effective method presents competitive
results compared to the state-of-the-art models. The visual results of our method given in
Fig. 9 also demonstrate that our algorithm is effectively able to overcome challenges such as
strong illumination conditions.

Additionally, in Table 3, we present our statistical results on the ColorChecker RECom-
mended, and INTEL-TAU datasets, where the scenes are illuminated uniformly. Despite the
suboptimal experimental setting caused by the absence of pixel-wise ground truth informa-
tion, our method outperforms most of the state-of-the-art models. It achieves the third-best
result on average for both datasets. Furthermore, it outputs a considerably low angular error
for the worst cases (Q3) which is a valuable outcome since in the field of color constancy it
is desired to improve the error for these cases (Ulucan et al. 2023c).

As a result, all of the experimental results show that our method can achieve consistent
performance across diverse benchmarks and under complex illumination conditions. Further-
more, the statistical results demonstrate that our algorithm, which simultaneously addresses
both color constancy and color assimilation illusions, outperforms its single-scale version that
cannot reproduce illusions. This provides empirical evidence supporting our claim that the
ability to reproduce our sensation on color assimilation illusions is closely linked to improved
color constancy performance, thereby highlighting the relationship between the two phenom-
ena from the perspective of computer vision. The experiments also present the fact that by
developing simple yet effective algorithms that do not rely on any learning strategy, it is
possible to achieve state-of-the-art performance.

Fig. 8 Visual comparison of the proposed method with existing color constancy approaches on the MIMO Real-
World dataset. (Left to right): input scenes, results of GI, results of SIEE, and results of our method.
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Table 2 Statistical results on Rendered Mixed-Illumination and Rendered WB (Set 2). The results are
reported based on our recent publication (Ulucan et al. 2024a). The top results are highlighted by using
color coding: best, second-best, and third-best.

Angular Error →E 2000

Mixed-Illumination Test Set Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

GP (Qian et al. 2018) 19.7° 11.9° 17.2° 27.1° 25.1 19.1 22.6 27.5
GI (Qian et al. 2019) 6.4° 4.7° 5.7° 7.1° 12.8 9.6 12.5 14.6
KNN WB↑ (Afifi et al. 2019) 5.8° 4.3° 5.8° 6.9° 12.0 9.4 11.6 13.6
Interactive WB↑ (Afifi and Brown 2020b) 5.9° 4.6° 5.6° 6.6° 11.4 8.9 10.9 12.8
Deep WB↑ (Afifi and Brown 2020a) 4.5° 3.6° 4.2° 5.2° 10.9 8.6 9.8 12.0
Mixed WB↑ (Afifi et al. 2022) 5.4° 4.3° 4.9° 6.2° 10.6 9.4 10.7 11.8
Style WB↑ (Kınlı et al. 2023) 5.7° 4.5° 5.4° 6.3° 12.1 10.4 12.1 13.4
FDM WB↑ (Kınlı et al. 2025) 5.9° 4.6° 5.9° 6.9° 10.2 8.8 9.8 11.7
Single-Scale 4.8° 3.3° 4.6° 8.1° 11.0 8.1 10.4 14.7
Proposed 4.8° 3.4° 4.4° 6.3° 8.9 6.7 8.5 12.0

Angular Error →E 2000

Rendered WB (Set 2) Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

max-RGB (Land and McCann 1971) 13.2° 8.2° 12.6° 18.1° 12.9 9.0 13.4 17.1
GW (Buchsbaum 1980) 8.6° 5.4° 7.9° 10.9° 10.7 7.7 10.1 13.2
SoG (Finlayson and Trezzi 2004) 9.0° 5.3° 8.3° 12.0° 9.8 6.9 9.7 12.5
1st - GE (Van De Weijer et al. 2007) 12.5° 7.6° 11.9° 17.0° 13.0 9.1 12.9 16.6
WGE (Gijsenij et al. 2011) 13.5° 7.8° 12.6° 18.6° 14.0 9.0 13.7 18.6
FC4↑ (Hu et al. 2017) 10.4° 5.3° 9.3° 14.2° 10.8 7.4 10.6 13.8
Quasi-U CC↑ (Bianco and Cusano 2019) 10.5° 5.9° 9.4° 14.0° 10.7 7.0 10.5 13.9
WB-sRGB↑ (Afifi et al. 2019) 4.5° 2.3° 3.6° 6.0° 5.6 3.4 4.9 7.1
Single-Scale 8.7° 4.3° 8.0° 14.2° 10.6 6.6 10.3 15.2
Proposed 7.8° 3.7° 7.1° 12.9° 10.3 6.1 10.0 15.2

Input Image GP Deep WB Proposed Ground Truth

Input Image LSAC Deep WB Proposed Ground Truth

Input Image GI Deep WB Proposed Ground Truth

Fig. 9 Visual comparison of the proposed method against both traditional and learning-based methods on indoor
scenes.
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Table 3 Statistical results on ColorChecker RECommended and INTEL-TAU datasets. The results are reported
based on our recent publication (Ulucan et al. 2024c). The top results are highlighted by using color coding: best,
second-best, and third-best.

ColorChecker RECommended INTEL-TAU

Algorithms Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

max-RGB (Land and McCann 1971) 7.78° 1.49° 5.43° 17.47° 10.49° 1.70° 11.14° 19.24°
GW (Buchsbaum 1980) 4.71° 0.93° 3.54° 10.44° 4.90° 0.93° 3.85° 10.59°
1st - GE (Van De Weijer et al. 2007) 5.79° 0.93° 3.68° 14.17° 5.89° 0.94° 4.07° 13.79°
wGE (Gijsenij et al. 2011) 6.08° 0.78° 3.33° 15.57° 5.99° 0.80° 3.63° 14.89°
DOCC (Gao et al. 2015) 7.23° 0.79° 4.26° 18.04° 7.18° 0.80° 4.66° 16.97°
GP (Qian et al. 2018) 3.81° 0.76° 2.96° 8.35° 3.57° 0.64° 2.56° 8.23°
GI (Qian et al. 2019) 3.19° 0.44° 1.90° 8.02° 3.32° 0.56° 2.18° 8.03°
BIO-CC (Ulucan et al. 2022a) 4.40° 0.86° 3.30° 9.84° 4.14° 0.76° 3.05° 9.42°
BBCC (Ulucan et al. 2023a) 3.48° 1.06° 2.71° 7.37° 3.37° 0.79° 2.63° 7.25°
MSCC (Ulucan et al. 2023c) 3.16° 0.62° 2.16° 7.32° 3.23° 0.59° 2.23° 7.47°
BoCF CC↑ (Laakom et al. 2020) - - - - 2.90° 0.90° 2.40° 6.10°
Quasi-U CC↑ (Bianco and Cusano 2019) 3.46° - 2.23° - 3.12° 0.60° 2.19° 7.28°
SIIE↑ (Afifi and Brown 2019) 2.77° 0.55° 1.93° 6.53° 3.42° 0.73° 2.42° 7.80°
C3AE↑ (Laakom et al. 2019) 2.10° 0.80° 1.90° 4.00° 3.40° 0.90° 2.70° 7.00°
One-Net CCC↑ (Domislović et al. 2022) - - - - 3.30° 1.10° 3.20° 5.90°
FFCC↑ (Barron and Tsai 2017) 2.95° 0.57° 2.19° 6.75° 3.42° 0.70° 2.38° 7.96°
FC4↑ (Hu et al. 2017) 1.77° 0.34° 1.11° 4.29° 2.60° 0.70° 2.00° 5.50°
C5↑ (Afifi et al. 2021) 2.50° 0.53° 1.99° 5.46° 2.52° 0.52° 1.70° 5.96°
CNN↑ (Bianco et al. 2015) 3.23° 0.92° 2.64° 6.54° 3.20° 0.92° 2.56° 6.55°
Revisiting CNNs↑ (Ulucan et al. 2024c) 2.70° 0.62° 2.00° 5.98° 2.90° 0.79° 2.27° 6.11°
Single-Scale 2.49° 0.91° 2.03° 4.80° 3.45° 1.17° 2.97° 6.55°
Proposed 2.32° 0.68° 1.76° 4.85° 2.67° 0.73° 2.09° 5.59°

4.2.3 Ablation Study

To validate our design choice for our method, we conducted an ablation experiment on subsets
of the Gehler and INTEL-TAU datasets. We compared single-scale estimation, propagating
estimates from the finest level through the pyramid, and our proposed independent estimation
at each scale. As presented in Table 4, the results confirm that propagating estimates leads
to significant degradation in accuracy, while the proposed algorithm achieves the best per-
formance. The reason behind this performance difference can be explained by the fact that
propagating estimates causes degradation in local coherence which decreases the accuracy
of the estimates as also previously discussed in Sec. 3.2 and shown in Fig. 4. These findings
support the necessity of computing estimates independently at each scale, as adopted in our
method.

Additionally, this ablation study provides insight into the link between color constancy
accuracy and illusion reproduction from the perspective of computer vision. The single-
scale version cannot reproduce color assimilation illusions, while the proposed method both
achieves high color constancy accuracy and addresses illusions.
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Table 4 Ablation study comparing single-scale computations, propagation of estimates from the
finest level, and the proposed method on subsets of the Gehler and INTEL-TAU datasets. The
best results are highlighted in bold.

ColorChecker RECommended INTEL-TAU

Algorithms Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Single-scale 2.65° 1.05° 2.18° 4.92° 3.40° 1.28° 2.87° 6.43°
Propagation 4.92° 2.64° 4.21° 8.18° 4.03° 1.86° 3.56° 7.03°
Proposed 2.28° 0.76° 1.73° 4.68° 3.18° 1.14° 2.71° 6.04°

4.3 Experiments on Low-Light Image Enhancement

In this section, we present a brief investigation on low-light image enhancement. First, we
explain our experimental setup and then discuss our results.

4.3.1 Experimental Setup for Low-Light Image Enhancement

We compare our learning-free method against 22 learning-based models, and our initial ver-
sion (Ulucan et al. 2024a) on 2 widely used benchmarks, namely, the LOL-v1 and LOL-v2
datasets (Wei et al. 2018; Yang et al. 2021). In order to provide a statistical analysis, we use
the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) (Wang et al.
2004). Higher PSNR and SSIM scores represent better results. We give quantitative results
based on recent comprehensive works (Hou et al. 2024; Cai et al. 2023; Jiang et al. 2025).

4.3.2 Experimental Results for Low-Light Image Enhancement

Quantitative results of our experiments are shown in Table 5. Our algorithm, which is
specifically designed for color illusion perception and color constancy, presents competitive
results compared to the learning-based models developed for the task of low-light image
enhancement. Statistically, it is the third-best algorithm on average.

When low-light scenes exhibit color tints due to illumination effects, many existing meth-
ods tend to generate output images with an unwanted color cast, as seen in the first row of
Fig. 10. On the other hand, our multiresolution color constancy approach greatly avoids these
artifacts. Additionally, in Fig. 10, we can observe that due to the nature of our method it per-
forms both low-light image enhancement and color constancy. Therefore, if the ground truth
images include color shifts that our method eliminates, this may affect the quantitative results
negatively, although our algorithm effectively improves the scenes. We avoid white-balancing
the ground truths to maintain fairness since other low-light image enhancement techniques
are evaluated by using the original ground truths.

Lastly, we would like to briefly discuss the advantages and the limitations of our method
for its application to low-light image enhancement. One of the important advantages of our
algorithm is that it does not require any optimization or extensive parameter tuning. This
is beneficial when we would like to avoid the computational cost of the training stages
of learning-based models. Moreover, our method operates on a single image, in contrast
to fusion-based techniques that need multiple exposure settings. Also, it simultaneously
enhances low-light conditions and corrects color casts. On the other hand, in some scenes
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Table 5 Statistical comparison of the proposed method against the learning-based low-light image enhancement
models, and its initial version (Ulucan et al. 2024a). The top results are highlighted by using color coding: best,
second-best, and third-best.

LOL-v1 LOL-v2 LOL-v1 LOL-v2

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Fei et al. (2023) 15.90 0.54 - - Wang et al. (2019) 14.38 0.44 13.27 0.45
Moran et al. (2020) 15.28 0.47 14.10 0.48 Fu et al. (2023) 19.51 0.73 - -
Yang et al. (2023) 19.74 0.74 - - Chen et al. (2021) 16.27 0.50 19.80 0.81
Liu et al. (2021) 18.23 0.72 18.37 0.72 Li et al. (2020) 21.46 0.80 17.80 0.79
Ma et al. (2022) 14.78 0.65 20.28 0.75 Xu et al. (2020) 18.27 0.66 16.85 0.67
Yang et al. (2020) 19.86 0.83 20.13 0.83 Jiang et al. (2025) 20.45 0.80 - -
Wei et al. (2018) 16.77 0.56 15.47 0.56 Kosugi and Yamasaki (2020) 15.23 0.45 14.05 0.45
Yang et al. (2021) 17.20 0.64 20.06 0.81 Jiang et al. (2021) 17.48 0.65 18.23 0.61
Wei et al. (2024) - - 20.79 0.79 Nguyen et al. (2024) 23.97 0.84 - -
Chen et al. (2019) 14.35 0.43 13.24 0.44 Cai et al. (2023) 25.16 0.84 22.80 0.84
Wu et al. (2022) 21.33 0.84 21.16 0.84 Ulucan et al. (2024a) 20.46 0.72 19.66 0.70
Zhang et al. (2019) 20.87 0.80 14.47 0.64 Proposed 22.28 0.80 21.58 0.81

Input Image Cai et al. (2023) Nguyen et al. (2024) Proposed Ground Truth

Fig. 10 Visual comparison of our method against learning-based models on low-light image enhancement.

our method may be more prone to noise as other traditional methods in this field than the
state-of-the-art networks-based strategies. Yet, with this application, we demonstrate that with
explainable operations that are built upon the observations on our visual system, our method
cannot only address color constancy and color illusions but also perform low-light image
enhancement with a competitive performance. This makes our method the first approach in
the literature that can perform these 3 different tasks simultaneously with a single pipeline.
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5 Conclusion

Our visual system is generally able to identify the true reflectance of objects regardless of the
environmental context, yet it sometimes fails to accurately determine the actual colors present
in a scene. Color illusions demonstrate how contextual information can fool our perception.
Both color constancy and color illusion perception are two phenomena widely studied in the
field of computational neuroscience. Nevertheless, it is still unclear how color constancy is
achieved or why our perception can be deceived by illusions. However, we do know that
there is a link between illusions and color constancy, and an ideal algorithm mimicking our
visual system should be capable of replicating both our perception of color illusions and our
ability to achieve color constancy. By taking motivation from these observations, we designed
a single algorithm that can mimic our behavior on both phenomena. We accomplished this
by leveraging observations from various computational neuroscience and computer vision
studies, and we introduced our multiresolution color constancy method. Our algorithm relies
on scale-space within scale-space operations, and the modified version of the local space
average color method. The proposed strategy allows us to estimate the illuminant at each
level, and enables us to mimic our sensation on illusions by utilizing information from the
coarser scales where the effect of illusions is greater than the finer scales. Furthermore, our
method is also able to perform low-light image enhancement by also white-balancing the
poorly illuminated images which is an advantage for this task since it eliminates the need of
a separate color constancy operation.

To the best of our knowledge, this is the first study introducing a single algorithm that can
perform these three distinct computer vision tasks. As future work, we will analyze color illu-
sions by using learning-based strategies, and we will focus on creating evaluation techniques
for color illusions.
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