
Color Perception in Vision-Language Models: From
Feature Extraction to Instruction Tuning Methods

Aya Nuseir1[0000−0001−7905−4199] and Marc Ebner1[0000−0003−2725−2454]

University of Greifswald, Institute of Mathematics and Computer Science, Germany
{s-aynuse,marc.ebner}@uni-greifswald.de

Abstract. This study evaluates the color perception capabilities in vision language mod-
els (VLM) by studying the impact of adopting three different visual feature extraction
methods and the Visual Instruction Tuning method on color understanding. We created
a customized Visual Question Answering (VQA) dataset of simple geometric shapes in
various colors against a colored background, paired with diverse question types ranging
from basic color identification to relational reasoning. Twelve VLMs are used in our evalu-
ation and divided into two groups: the first group contains VLP models that employ three
distinct visual feature extraction approaches: region-based (VisualBERT-FRCNN), grid-
based (VisualBERT-ResNet), and patch-based (ViLT, BLIP). The second group includes
recent state-of-the-art Multi-modal Large Language Models (MLLMs) that adopt visual
instruction tuning. The performance of the two groups varies across different color percep-
tion tasks, where the first group failed to identify the color categorization task and showed
an inability to identify the cyan and magenta colors. The second group, including models
like BLIP-2, InstructBLIP, LLaVA-1.5, Gemma 3, Qwen2.5-VL, GPT-4.1, GPT-4.1 mini,
and GPT-4.1 nano, show varying performances across the color perception tasks. BLIP-2,
InstructBLIP, and LLaVA-1.5 were unable to identify the cyan and magenta colors, but
can identify the color category. The performance of GPT-4.1 outperforms all the adopted
models, including the Qwen2.5-VL models, which shows competitive performance despite
being open source.

Keywords: Vision-Language Models · Visual Question Answering · color identification ·
visual feature extraction · Visual Instruction Tuning.

1 Introduction

Over the last decade, Vision-Language Models (VLMs) have captured researchers’ atten-
tion and witnessed rapid advances in their ability to understand and reason about visual
content, making them powerful tools for multimodal applications ranging from image
captioning to visual reasoning [1,2]. These models were trained on massive and extensive
image-text datasets to learn the representations of both visual and textual data[3]. Since
the VLMs are becoming growingly integrated into real-world applications, their ability
to perceive and reason about fundamental visual elements becomes important [4,5]. One
of these elements is color perception[6], which involves using top-down knowledge from
experience or trained data for bottom-up processing of raw visual data [7]. However,
the perception and reasoning about colors represent a particular challenge in VLMs[13].
While humans naturally and easily process color information like categorising colors, un-
derstanding relationships between colors, and applying color-based reasoning, current
vision-language models face several obstacles in reaching similar abilities [31]. Although
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color perception is important, most current VLM benchmarks combine it with other
visual tasks. That makes it hard to focus on and test how well models understand color
on their own. Visual Question Answering (VQA) is considered a VLM downstream task
that combines computer vision (CV) and natural language processing (NLP) fields to
answer questions about images [14,15]. While great efforts are made to develop robust
VQA models that can answer complex questions, there is a gap in the fine-grained under-
standing of visual elements, such as color perception and understanding. This research
fills that gap by creating an evaluation framework to check how well VQA handles color
perception. We created a custom dataset consisting of three simple shapes (a triangle, a
circle, and a square) in nine different colors, displayed on various colored backgrounds 1.
By making sure the color of the shapes is distinct from the background, we created an
environment that focuses only on testing color perception without including other visual
reasoning challenges. Our question set is diverse, covering four different features of color
understanding, including color identification, which focuses on nine specific colors. The
second feature is the color categorization, where nine colors are categorized into three
categories: primary, secondary, and achromatic. The third and fourth features cover the
relationship between colors, where the third feature focuses on whether the color is warm
or cool. The final feature is complementary colors, which are pairs of colors that, when
combined, produce a grayscale color (such as white or black) [8], Figure 1 shows the
complementary color pairs. Notably, we adopted the RGB additive color model when
developing our dataset. We use the RGB color model because it directly relates to how
the human visual system perceives color and is the fundamental color space for electronic
devices that display images [9,10].

Fig. 1. Complementary colors in the RGB additive color, where the first pair is red-cyan (the upper
pair), the second pair is green–magenta (the middle pair), and finally, the third pair is blue–yellow.

Through this research, we classify our experiments into two groups; the first group
analyzes the performance of several important Vision-Language Models that adopt dif-
ferent visual feature extraction approaches: ViLT [17], VisualBERT [16] (with both FR-
CNN and ResNet backbones), and BLIP [18]. These models adopt three different types
of visual feature extraction: (1) Region Feature-based models like VisualBERT-FRCNN,
which extract features from main object regions; (2) Patch Feature-based models such
as ViLT and BLIP, which process images as sequences of equal patches; and (3) Grid
Feature-based models like VisualBERT-ResNet, which extract features from uniform
grid cells across the entire image. By adopting these models with different visual feature
extraction methods, we investigate their impact on color perception. Figure 2 illustrates

1 https://github.com/ASNuseir/Color-Perception-in-VL/tree/main
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the visual feature extraction methods by example, utilizing an input image that contains
one colored shape. The second group examines the performance of the recent state-of-
the-art Multi-modal Large Language Models (MLLMs) that adopt visual instruction
tuning. The process begins with data preparation, where the input data is formatted as
{Instruction, Input, Output}. Instruction represents a textual description of the task.
Input consists of {< image >, < text >}, and Output is the response following the given
instruction. The general architecture for these models comprises three elements: a visual
encoder for processing images, an LLM for understanding and generating text, and a
projector that aligns embeddings between the two modalities [12]. Through the work
in this group, we evaluated state-of-the-art MLLMs, including BLIP-2 [19], Instruct-
BLIP [20], LLaVA-1.5 [21], Gemma 3 [22], Qwen2.5-VL [23], GPT-4.1, GPT-4.1 mini
and GPT-4.1 nano [24] (the last three models are considered closed-source commercial
models).

Visual Feature Extraction Methods

Region Feature Method
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Fig. 2. The main three visual feature extraction methods used in VLMs.

The contributions of this paper are : (1) we present a constructed dataset for eval-
uating color perception in VLMs that separates the color perception from other visual
reasoning tasks; (2) We created a structure of color perception questions that covers
identification, categorization, and relational reasoning; (3) We provide an evaluation of
four VLMs that employ three different visual feature extraction methods; and (4) we
evaluate the recent state-of-the-art MLLMs that adopt visual instruction tuning method.
In this work, we use ’color perception’ to cover all color understanding capabilities, from
basic identification to more complex relational tasks.

This paper is organized as follows. Section 2 provides an overview of VLP models that
address the topic of color perception. Section 3 describes the features and characteristics
of the developed datasets. Section 4 reviews the models that we have used in evaluating
the created datasets. Section 5 presents the evaluation of the experiments, and the paper
concludes in Section 6.
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2 Related Work

Recently, there has been an increasing interest in studying the capability of VLMs to
understand visual attributes, including color perception. Liang et al. [25] introduced
ColorBench, a comprehensive benchmark specifically designed to assess the color un-
derstanding capabilities of VLMs across perception, reasoning, and robustness. The
evaluation of 32 VLMs with different architectures indicated that while scaling laws
generally hold, language models play a more crucial role than vision encoders in color
understanding tasks. Hyeon-Woo et al. [26] investigate how a VLM perceives images by
an eye examination process in the context of color, shape, and semantics. For this pur-
pose, they introduce Learning ElemeNt for visual Sensory (LENS), a synthetic dataset
categorized into basic visual elements such as color, shape, and semantics. They found
that VLMs have varying sensitivity to different colors while consistently showing in-
sensitivity to green across different VLMs. While ColorBench assesses whether VLMs
can use color information in practical applications, our dataset identifies specific color
perception mechanisms that are fit or not. Both approaches are scientifically necessary:
ColorBench shows practical limitations, while our dataset defines their causes. For ex-
ample, a model failing our cyan identification task will likely struggle with ColorBench’s
cyan-related questions. However, ColorBench’s complex scenes cannot isolate whether
failures are from color perception deficits, object recognition errors, or reasoning limi-
tations. Our dataset provides this diagnostic specificity.

Akbarinia [30] analyzed categorical color perception in artificial neural networks
(ANNs). The study evaluates how unimodal vision models (ImageNet-trained networks)
and multimodal vision-language models (CLIP) represent color categories. Results show
that vision networks alone explain approximately 80% of human-like color categoriza-
tion. At the same time, language-modulated models account for the remainder, suggest-
ing that color categories are a language-independent representation, although linguistic
color terms partly shape it during their development. A second set of experiments using
Taskonomy networks demonstrates that human-like color categories mostly emerge in
networks trained on high-level semantic and 3D tasks rather than low-level 2D tasks,
indicating that these categories serve functional roles in vision. Arias et al. [27] explored
how color is learned in CLIP. Through their study, they investigated if color is encoded
as an object attribute by asking questions on a basic color/object dataset. They ex-
amined the capability of CLIP to recognize and read color with a Stroop test dataset.
Although existing work is considered foundational for evaluating the VLP model and has
begun investigating specific perceptual capabilities, there is a significant gap in the eval-
uation of color perception using custom VQA benchmarks. Most available benchmarks
focus on general multimodal understanding or provide limited tasks related to color.
This demands the development of custom VQA datasets that are designed to evaluate
color perception across various visual contexts and represent a significant advancement
in VLM evaluation methodology.
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3 Dataset

In this paper, we present a custom dataset designed to evaluate the understanding of
color features in state-of-the-art vision-language models. Our dataset consists of images
of single geometric shapes (circle, square, triangle) with one of nine colors against col-
ored backgrounds, where the background and the geometric shape should not have the
same color. The list of colors we adopted is: red, green, blue, cyan, magenta, yellow,
white, gray, and black. All images feature a 3x3 matrix of patches, and each one of
the shapes’ sizes is 32x32 pixels, resulting in images with 96x96 pixels. The 3x3 ma-
trix offers us nine positions for the geometric shape, and since we adopt nine possible
colors for the shape, eight colors for the background, and nine positions to place the
shape, we obtain 648 images for each of the three geometric shapes. As a result, the
dataset has 1944 images. As we mentioned, we avoid identical colors; some combinations
may appear visually similar. Our color selection ensures perceptual separation with 60°
hue differences between any chromatic color in HSV space. For example, red (0°) and
magenta (300°) are separated by 60° and the same perceptual distance as red-yellow,
yellow-green, green-cyan, cyan-blue, blue-magenta, and magenta-red. Through this uni-
form separation, we ensure that real color recognition is required rather than depending
on contrast differences.

3.1 Color Space and Geometric Shape Selection

Our color selection contains both primary colors (red, green, blue), secondary colors
(cyan, magenta, yellow), and achromatic colors (white, gray, black), and the purpose
of this selection is to provide comprehensive coverage of fundamental color categories.
We ensure equal representation across the RGB color space (primary, secondary, and
achromatic) to avoid bias toward specific color categories. This design enables us to eval-
uate VLMs’ understanding of different color classifications and perceptual categories.
Keeping the shape and background colors separate ensures that all evaluation meth-
ods require actual color differentiation rather than relying on illumination or intensity
differences. Our purpose in selecting the three basic geometric shapes (circle, square,
triangle) is to offer variety in shapes while keeping simplicity, which helps ensure that
color perception is the primary focus of the evaluation. The 3x3 grid positioning system
allows us to assess whether spatial location affects the accuracy of color perception.
Figure 3 shows samples from the dataset images.

Fig. 3. samples from the dataset images, where three geometric shapes were adopted during the creation
of our dataset
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3.2 Question Design

Each image is paired with a set of questions focusing on different features of color per-
ception, including basic color identification, color categorization (primary/secondary or
achromatic), and color relationships (complementary colors, warm/cool). Our question
set is diverse to cover different features of color understanding, like:

– Basic recognition: ’ What is the color of the circle in the image?’
– Color categorization: ’Is the background color a primary, secondary, or achromatic

color?’
– Temperature perception: ’Is the circle colored with a warm color?’
– Relationships between colors: ’What is the complementary color of the green square?’

or ’Are the square color and the background color complementary colors?’

The total number of questions generated is 22,032, distributed as shown in Figure 4. For
the color identification question type, each color appears 432 times, representing 17.5% of
the dataset questions, and each category of three-color categorization occurs 1296 times,
representing 17.5% of the dataset questions. Two forms of questions are used for the
complementary color question: a binary answer and a color name answer. The questions
with color names are answered equally, and each of the six complementary colors is
answered 216 times. This type of question represents 12% of the dataset questions.
For the warm/cool questions, we use a binary question form, which represents 12% of
the dataset questions. Finally, the remaining dataset questions are in binary form and
represent 41% of the dataset questions; these questions concern whether the color of
the shape or background is visible in the image. Our four question types (identification,
categorization, temperature, complementary) range from basic recognition to a higher
level of color reasoning, enabling diagnostic evaluation of where specific models fail in
color processing.

3.3 Dataset Characteristics and Scope

Color perception in vision-language models requires a human-like understanding of vi-
sual content and runs through complex interactions between visual feature extraction,
semantic understanding, and linguistic representation [11]. We developed our synthetic
dataset to isolate the specific contribution of color processing from other factors. Real-
world images introduce multiple issues: texture variations, lighting conditions, object
semantics, and scene complexity interact with color perception. For example, a ”green
banana” requires the model to employ object recognition (banana), color identification
(green), and reasoning (bananas are generally yellow/green). Failure on such tasks could
be attributed to object recognition errors, color perception deficits, or reasoning failures,
and our geometric shapes eliminate these obstacles, creating a clean basis for evaluating
color. The synthetic images enable us to evaluate how color perception works.

4 VLP Models and visual feature extraction methods

Our evaluation of the adopted models is divided into two groups of experiments: the first
group focuses on selecting VLP models using three different visual feature extraction
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Fig. 4. Distribution of question types and related answers in the dataset. The left chart shows the overall
distribution of question types, with ”Other” (9,072 questions), followed by ”Color Identification” and
”Color Category” (each with 3,888 questions), and ”Warm/Cool” and ”Complementary Color” (each
with 2,592 questions). The middle chart displays the distribution of answers for Color Identification
questions, showing equal representation across nine color categories with 432 instances each. The chart
to the right presents the distribution of Color Category question answers, with equal representation
across three categories.

methods. The second group is based on the evaluation of the Visual Instruction tuning
models. For the first group of experiments, we adopt four Vision-Language Models that
employ different approaches to visual feature extraction. By comparing models across
these visual feature extraction methods, we aim to understand how architectural choices
in visual feature extraction affect a model’s ability to perceive and reason about color
features. The second group analyzes recent models whose architecture involves instruc-
tion tuning within Multi-modal Large Language Models (MLLMs). In this section, we
provide an overview of the adopted models, classifying them into two groups: models
with three visual feature extraction methods and Visual Instruction tuning models. All
models are implemented in PyTorch, and the Hugging Face transformers library for the
open-source models is employed to ensure reproducibility and standardization across
experiments.

4.1 Models with three Visual Feature Extraction methods

Region-based Feature Method: For this method, we adopted VisualBERT [16] with
Faster-RCNN (FRCNN) [28] backbone. FRCNN identifies regions of interest (ROIs)
within the image, then extracts the image features from these regions to align with text
features (that are extracted using BERT transformer [29]) through multiple transformer
layers. This object-based approach focuses on detected objects rather than processing
the entire image uniformly.

Grid-based Feature Method: The other version of VisualBERT model is the one that
uses a ResNet backbone to extract grid features from the image, by producing a uniform
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representation of the visual raw input without detecting objects. These grid features are
then processed together with text through a transformer architecture. Unlike FRCNN,
this approach captures information from the whole image in a regular grid frame.

Patch-based Feature Method: ViLT [17] patch projection embedding Vision Trans-
formers (ViT) [32], dividing input images into fixed-size patches and linearly projecting
these patches into embeddings. These patch embeddings are then combined with text
embedding and fed into a unified transformer architecture to learn the interaction be-
tween images and text. BLIP [18] uses a ViT backbone [32] to extract features from
images, which are then processed through a Multimodal mixture of Encoder-Decoder
(MED) architecture. The MED operates in three modes: unimodal encoder, image-
grounded text encoder, and image-grounded text decoder. The model is jointly pre-
trained using image-text contrastive learning, image-text matching, and language mod-
eling. BLIP introduces a novel bootstrapping approach that generates synthetic captions
to improve training efficiency.

4.2 Visual Instruction Tuning Models

We also evaluate the following recent state-of-the-art MLLMs that utilize visual in-
struction tuning, starting with BLIP-2 [19], InstructBLIP [20], LLaVA-1.5 [21], Gemma
3 [22], Qwen2.5-VL [23], GPT-4.1, GPT-4.1 mini and GPT-4.1 nano [24]. Table 1 illus-
trates the number of parameters of each model used in this group and the datasets used
in the training. In addition to the datasets that were used in pretraining InstructBLIP,
LLaVA-1.5 uses a mixture of datasets that cover both academic task-oriented bench-
marks(such as TextVQA[39] and ScienceQA [40]) and vision-language instruction tuning
datasets (like LLaVA-Instruct-150K [21], ShareGPT[41]). The Gemma 3 model used a
set of multilingual datasets with doubled multilingual data coverage, multimodal image-
text pairs, 2T-14T tokens depending on model size. Qwen2.5-VL expanded the volume
of their pre-training data to 4.1T multimodal tokens, including interleaved image-text
data, grounding data with absolute coordinates, document omni-parsing (HTML for-
mat), video data with dynamic frames per second (FPS), and agent interaction data
from UI screenshots.

Table 1. The number of model parameters and the adopted pre-trained datasets.

Model Parameters number Pre-training dataset

BLIP-2 2.7B COCO [34], Visual Genome [35], SBU
[36], LAION[38],CC3M[37], CC12M

InstructBLIP FlanT5XL 4B 26 datasets cover 11 task
LLaVA-1.5 7B A mixture of datasets
Gemma 3 4B A custom corpus (2T-14T tokens), mul-

timodal data
Qwen2.5-VL 7B 4.1T multimodal tokens
GPT-4.1 Not specified Not specified
GPT-4.1 nano Not specified Not specified
GPT-4.1 mini Not specified Not specified
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5 Discussion

Our evaluation of the first group shows notable differences in how these vision-language
models process and reason about color perception. From Table 2, BLIP shows the best
performance accuracy (57.87%), followed by ViLT (40.93%) and VisualBERT variants
(33.26 % with FRCNN and 32.67 % with ResNet50). However, the performance varied
across different question types and color categories, suggesting that each model archi-
tecture encodes color information differently. All models show a higher performance on
certain questions (yes/no answers) compared to the remaining types of questions. The
results show that all models in this group failed to return the color categories, while
identifying the color names is easier for these models than determining the comple-
mentary color names. BLIP again outperforms the other models with (8.82%) accuracy
on questions about warm vs. cool color questions, and the other models in this group
show moderate performance close to BLIP, which reveals that BLIP has made a deeper
understanding of color properties beyond just naming colors. Notably, BLIP performs
worse on complementary color tasks than the other models in the group.

Table 2. Overall Performance Comparison of Vision-Language Models

Model Overall Acc Micro F1 CI CC CoC WC Other

Models with three Visual Feature Extraction methods

VisualBERT (FRCNN backbone) 33.26 0.333 01.67 00.00 05.72 06.00 19.85
VisualBERT (ResNet50 backbone) 32.67 0.327 01.96 00.00 04.94 05.91 19.85
ViLT 40.93 0.409 04.67 00.00 04.28 05.79 26.18
BLIP 57.87 0.579 12.20 00.00 01.37 08.82 35.46

Visual Instruction Tuning Models

BLIP-2 43.14 0.431 05.40 05.51 01.67 05.89 24.65
InstructBLIP 55.61 0.556 09.69 05.88 04.28 07.82 27.90
LLaVA-1.5 66.18 0.662 12.65 06.20 03.49 08.70 35.12
Gemma 3 58.73 0.587 14.73 10.89 06.84 06.42 19.82
Qwen2.5-VL 86.32 0.863 16.62 13.58 08.38 10.12 37.63
GPT-4.1 91.69 0.917 17.39 15.45 10.30 10.81 37.72
GPT-4.1 nano 65.17 0.652 11.96 05.50 06.40 08.04 33.25
GPT-4.1 mini 53.30 0.533 12.11 09.59 10.20 05.91 15.47
CI: Color Identification, CC: Color Categorization, WC: Warm/Cool, CoC: Complementary Color

To provide more detailed insights into this group, we analyzed model performance
across the color identification and complementary tasks, as shown in Table 3 and Figure
5, where we calculated the F1-score for each color. Per-color F1-scores reveal dramatic
variations in model performance across the nine different colors. Unusually, cyan and
magenta are challenging for all models in Group 1, with all achieving F1-scores of 0.000
for both colors, indicating complete failure in identification. BLIP achieved the highest
F1-scores for yellow (0.578) and black (0.834) among Group 1 models. The second group
significantly improved across the different color perception tasks, especially GPT-4.1 and
Qwen2.5-VL models. However, BLIP-2 shows poor performance similar to the models
in the first group but shows the ability to recognize the color categories with accuracy
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(5.51%). From Table 3, BLIP-2, InstructBLIP, and LLaVA-1.5 are unable to correctly
identify cyan and magenta. For instance, instead of magenta, they refer to this color
as pink, LLaVA-1.5 refers to cyan as blue, InstructBLIP as white, and Blip-2 refers to
it in some cases as blue, in others as green, as demonstrated in Figure 6, which shows
the confusion matrices for the InstructBLIP and LLaVA-1.5 models. Although Gemma
3 shows the ability to identify the cyan and magenta colors, its overall performance
(58.73%) compared to LLaVA-1.5 (66.18 %) is lower and slightly improved compared
to InstructBLIP (55.61%). The inability of the three models (BLIP-2, InstructBLIP,
and LLaVA-1.5) to identify the cyan and magenta colors affects their performance in
identifying the complementary pairs of color task, where these two colors are part of
this task. The rest of the models in this group can identify these two colors (cyan and
magenta), which improves their performance in the complementary color task. The two
commercial models, GPT-4.1 mini and GPT-4.1 nano, overall performance (respectively
65.17 % and 53.30%) are similar to or less than the LLaVA-1.5(66.18%). However, these
two models can identify the cyan and magenta colors, which directly affects the ability
to identify the complementary color pairs task. Also, these two models can categorize
colors into three categories.

The GPT-4.1 and Qwen2.5-VL models show impressive performances in all color
perception tasks, and their performances on warm/cool and the other tasks (binary
questions about the color presence in the image) are closely similar; the differences can
be seen in the complementary color task, where the GPT-4.1 outperforms the Qwen2.5-
VL in recognizing colors like cyan and magenta. However, GPT-4.1 is a commercial
model, while Qwen2.5-VL is an open-source model that can be used freely. The slight
difference between these two models could be attributed to the quality and quantity of
datasets used in their pre-training. However, the Qwen2.5-VL model is a good choice for
people looking for open-source and competitive performance similar to or better than
commercial models like GPT-4.1 mini and GPT-4.1 nano. To study the performance
of the second group on the color categorization task, we compute the model accuracy
of each one of the three categories (primary, secondary, and achromatic), where these
three categories are distributed equally through the color categorization task(each one
of the categories represents 33.33% of this task). Table 4 presents the performance of
this group on the color categorization task. The first three models in this group failed
to identify the secondary category, which contains yellow, magenta, and cyan colors.
InstructBLIP shows a bias toward the primary category, where all of its responses for
this task are in the primary category. LLaVA-1.5 shows a slight improvement compared
to InstructBLIP, which shows the ability to identify the achromatic category besides
the primary category.When compared with the two commercial models, GPT-4.1 mini
and GPT-4.1 nano, Gemma 3 outperforms them. Although these two models exceed
Gemma -3 in correctly identifying the primary category, Gemma 3 outperforms them
within the other two categories. Qwen2.5-VL outperforms GPT-4.1 in identifying the
primary category with an accuracy equal to 25.56% (this means that around 76 %
of the primary category answers are correctly recognized ). In contrast, GPT-4.1 in
the secondary and achromatic categories, with 31.14 % and 32.71 %, respectively(that
means GPT-4.1 answers the secondary category correctly with an accuracy of around
93% and with an accuracy of around 98% for the achromatic category), is better than the
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Qwen2.5-VL model. We measured latency and throughput for GPT-4.1 (API-hosted)
and Qwen (locally deployed). Qwen showed lower average latency (0.52 s vs 1.20 s for
GPT-4.1) and higher throughput (41.3 vs 18.3 tokens/s), as shown in Table 5. These
results indicate that Qwen, which is locally running, can generate faster responses on
appropriate hardware. However, the comparison should consider the following points:

– GPT-4.1 results include API overhead and network latency, which increase latency
and reduce throughput compared to the raw inference speed of the model.

– Our Qwen results are related to the specific GPU hardware and software environment
we used; different setups may yield slower or faster performance.
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Group 1: VLP Model with Three Visual Feature Extraction Methods
VisualBERT (FRCNN)
VisualBERT (ResNet50)
ViLT
BLIP
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Group 2: Visual Instruction Tuning Models
BLIP-2
InstructBLIP
LLaVA-1.5
Gemma 3
Qwen2.5-VL
GPT-4.1
GPT-4.1 nano
GPT-4.1 mini

Fig. 5. Per-color F1-score performance for color identification tasks. (A) Group 1 shows poor performance
for cyan and magenta across all models. (B) Group 2 exhibits significant improvement, with GPT-4.1
achieving strong performance across all colors.

6 Conclusions and Future Research Directions

Our evaluation of color perception in Vision-Language Models reveals a deep overview of
how architectural design choices and the quantity of the datasets utilized in pre-training
affect a model’s ability to understand and reason about colors. In the first group, BLIP
outperforms other models across all color types and question categories, suggesting its
patch-based visual feature extraction method may better encode color information. How-
ever, all tested models struggled with the categorization task and could not identify the
two colors, magenta and cyan, showing an important gap between human and machine
color perception capabilities. In the second group, GPT-4.1 outperforms all other mod-
els with an overall accuracy of around 91.7%, exceeding the open-source Qwen2.5-VL
model, which obtains an overall accuracy of around 86.3%. These results impact future
VLM development, we recommend that researchers consider visual feature extraction



12 F. Author et al.

Fig. 6. The confusion matrices of the InstructBLIP and LLaVA-1.5 models show the failure in cyan
and magenta colors. InstructBLIP identifies magenta as pink or red and cyan as blue, green, or white.
Similarly, LLaVA-1.5 identifies magenta as pink or red, while cyan is blue or red.

Table 3. Per-Color F1-Score for Color Identification and Complementary Color Tasks

Model Red Green Blue Cyan Magenta Yellow Black White Gray

Models with three Visual Feature Extraction methods

VisualBERT (FRCNN) 0.022 0.000 0.174 0.000 0.000 0.044 0.000 0.187 0.088
VisualBERT (ResNet50) 0.000 0.000 0.233 0.000 0.000 0.011 0.055 0.133 0.190
ViLT 0.468 0.272 0.074 0.000 0.000 0.469 0.224 0.327 0.115
BLIP 0.338 0.564 0.305 0.000 0.000 0.578 0.834 0.199 0.827

Visual Instruction Tuning Models

BLIP-2 0.333 0.444 0.325 0.000 0.000 0.244 0.134 0.205 0.211
InstructBLIP 0.507 0.658 0.662 0.000 0.000 0.545 0.754 0.531 0.574
LLaVA-1.5 0.645 0.970 0.690 0.000 0.000 0.750 0.927 0.867 0.901
Gemma 3 0.562 0.548 0.564 0.614 0.583 0.430 0.435 0.434 0.314
Qwen2.5-VL 0.781 0.793 0.946 0.761 0.694 0.969 0.924 0.934 0.970
GPT-4.1 0.969 0.924 0.960 0.906 0.908 0.977 0.907 0.922 0.803
GPT-4.1 nano 0.616 0.678 0.646 0.722 0.338 0.608 0.500 0.399 0.644
GPT-4.1 mini 0.550 0.563 0.442 0.541 0.498 0.546 0.451 0.435 0.356
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Table 4. Performance of the second group models(visual instruction tuning models) on the color cate-
gorization task by category type.

Model Primary(%) Secondary (%) Achromatic (%)

BLIP-2 08.69 00.00 22.55
InstructBLIP 33.33 00.00 00.00
LLaVA-1.5 33.33 00.00 01.85
Gemma 3 18.41 18.87 24.45
Qwen2.5-VL 25.56 21.75 29.65
GPT-4.1 23.68 31.14 32.71
GPT-4.1 nano 19.16 01.95 10.05
GPT-4.1 mini 20.16 16.53 17.66

Table 5. Comparison of Latency (s) and throughput (tokens/s) for GPT-4.1 (API) and Qwen (local).
Note: GPT-4.1 includes network transit times and the actual time it takes to come up with the answer;
Qwen depends on GPU hardware.

Model Avg. Latency (s) Throughput (tokens/s)

Qwen2.5-VL 0.5227 41.32
GPT-4.1 1.2030 18.35

methods when designing models for tasks requiring fine-grained visual understanding.
Further, it shows that open-source models, like the Qwen2.5-VL model, can be a good
choice for such tasks, whereas the Qwen2.5-VL model shows a competitive performance
compared with commercial models like GPT-4.1. In addition, the customized dataset
and evaluation framework developed in our study provide valuable tools for evaluating
and improving color perception in multimodal AI models. Future work should focus on
enhancing models’ capabilities for color perception and studying whether similar pat-
terns occur for other main visual elements, rather than color. Future work should vary
in complexity from our geometric shapes to natural objects on colored backgrounds
and then to complex real-world scenes. This would help us define where the color per-
ception capabilities break down. Although our RGB-based evaluation provides precise
control, extending the framework to Lab or HSV color spaces would test whether ob-
served limitations reflect RGB-specific encoding or general color perception deficiencies.
Also, future research could examine attention patterns and intermediate representations
to understand why specific architectures, like patch-based or region-based architectures,
show differential color sensitivity.
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