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Abstract
Intrinsic image decomposition has become an immensely studied problem over the last decades. It holds many
challenges but also provides large benefits if it can be solved. In this study, we provide a short review of intrin-
sic image decomposition algorithms, datasets, and applications, while also addressing the challenges of the field.
Aside from creating an algorithm for this under-constrained problem, another challenge is to evaluate the perfor-
mance of the developed methods since there are certain limitations in existing evaluation strategies. Thereupon,
we introduce two new error metrics, namely the ensemble of metrics and the imperceptible weighted score.
The ensemble of metrics integrates different perceptual quality metrics in scale-space, while the imperceptible
weighted score is the modified version of the well-known ∆E metric. We present the usability of our metrics on
two datasets by utilizing various intrinsic image decomposition algorithms.
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1 Introduction
Our visual system is able to differentiate between col-
ors, discount the illuminant, and estimate distances
unconsciously, while these abilities are difficult to
perform for computer vision systems [1, 2]. The effi-
ciency of machine vision applications might deteri-
orate in the presence of reflection, occlusion, glare
effect, ambiguity caused by light at edges, over-
saturated regions, and dark areas due to detail loss [3].
One way to increase the performance of machine sys-
tems is to use intrinsic image decomposition in the
application pipeline to overcome challenges arising
due to these issues.

Images can be decomposed into a ”family of
intrinsic characteristics” where each component is a
low-level feature of the input and it is referred to as

an intrinsic image [4]. The reflectance, shading, shad-
ows, depth, surface normals, and illuminant can be
given as examples for intrinsic images. Each low-level
feature enables us to determine different characteris-
tics of a scene more precisely, e.g., we can perform
object segmentation by using reflectance rather than
the pixel RGB values [2].

While intrinsic image decomposition provides
benefits to numerous computer vision applications,
developing effective intrinsic image decomposition
algorithms is troublesome due to the ill-posed nature
of the problem which is why intrinsic image decompo-
sition is framed as a computational challenge. Studies
in this field generally relax this problem by assum-
ing that the scene captured by a set of sensors can
be formed by the reflectance and shading elements as
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follows;
I(x, y) = R(x, y) · S(x, y) (1)

where, I is the image at the spatial location (x, y),
R represents the reflectance which provides the ratio
between the total reflected and total incident illumi-
nation, and S presents the interaction between the
illumination and the surfaces [4, 5].

The challenge in this field is not only the ill-posed
nature of the problem but also the lack of common
evaluation strategies, i.e., datasets and error metrics.
Different datasets are used to evaluate the proposed
algorithms, and the employed benchmarks tend to
meet the assumptions made in the proposed meth-
ods, thus objectively identifying the best-performing
algorithm is quite challenging [6]. Also, most of the
datasets have different characteristics that make it
difficult to evaluate the algorithms in a robust man-
ner. For instance, some datasets contain single objects
placed in front of a plain black background, others
contain 3D models rendered with an environmental
map where the object is positioned in the foreground
and can be easily segmented, some benchmarks con-
tain subjective ground truths, and some datasets are
not specifically designed for intrinsic image decom-
position but are used in this field [7–11]. Based on
all of these observations, we recently created a large-
scale intrinsic image decomposition dataset called
IID-NORD by taking the shortcomings of existing
benchmarks into account [3].

Not only the absence of a common benchmark but
the lack of quality metrics reflecting the actual perfor-
mance of the intrinsic image decomposition methods
is a critical drawback [12]. Therefore, it is trouble-
some to report the algorithms’ performance in a robust
and fair manner. Also, the fact that intrinsic image
decomposition usually requires the evaluation of dif-
ferent intrinsics at once makes the assessment task
even more challenging, i.e., an algorithm can extract
reflectance much more precisely than shading. There-
fore, we need a metric that can analyze different
intrinsics by considering the individual characteristics
of each intrinsic and that provides us a global quality
score. Moreover, we need metrics that can analyze the
intrinsics individually since a single intrinsic image
can be used in computer vision applications, i.e.,
reflectance can be utilized for image segmentation.

The development of evaluation strategies is as
important as the design of algorithms in the field
of intrinsic image decomposition since evaluation
methods allow us to determine the shortcomings and
strengths of algorithms which helps us to create more

efficient intrinsic image decomposition approaches.
Therefore, in our previous work [13], we discussed the
challenges of intrinsic image decomposition and made
an attempt to provide new perspectives in this field by
introducing two evaluation strategies. In this study, we
extend our previous work. In particular, we improve
the imperceptible ∆E metric and introduce the imper-
ceptible weighted score. Furthermore, we provide a
more detailed review of intrinsic image decomposi-
tion algorithms and datasets, while we also discuss
the intrinsic image decomposition applications. To
the best of our knowledge, only two comprehensive
surveys exist in the field of intrinsic image decompo-
sition. In the study of Garces et al. [12], an extensive
review of deep learning-based intrinsic image decom-
position methods is provided, and these algorithms
are investigated in detail. In the study of Bonneel et
al. [6], a survey focusing on evaluating the intrin-
sic image decomposition algorithms in the field of
image editing is provided. Also, in the same study,
the authors summarized the typical applications of
intrinsic image decomposition in image editing. In this
study, we provide a different perspective compared to
similar studies. While we cover a larger range of appli-
cations of intrinsic image decomposition from image
fusion to license plate recognition, we also review the
traditional and learning-based algorithms.

This paper is organized as follows. In Sec. 2 we
provide a review of intrinsic image decomposition
algorithms. In Sec. 3 we discuss the intrinsic image
decomposition applications. In Sec. 4 we review the
intrinsic image decomposition benchmarks. In Sec. 5
we detail the evaluation methods and introduce our
error metrics. In Sec. 6 we provide our experimental
results. Lastly, in Sec. 7 we give a brief summary of
our work and discuss possible future directions.

2 Algorithms
Intrinsic image decomposition algorithms provide
many beneficial cues for various computer vision
pipelines ranging from object segmentation to image
fusion [14]. Therefore, over the last decades, numer-
ous algorithms based on traditional and data-
dependent methods have been proposed in this field.
These algorithms have various input requirements,
i.e., a time-varying image stack, multiple images taken
under different lights, multiple images with different
viewing conditions, an input sequence where the light
source is placed at distinct locations in each image,
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different focal distances, depth information, or a sin-
gle RGB image [6]. In this section, we provide a brief
review of intrinsic image decomposition algorithms
by grouping them into two categories as traditional
algorithms and learning-based algorithms.

2.1 Traditional Algorithms
Over the last five decades, various traditional intrin-
sic image decomposition algorithms have been intro-
duced [15–20]. One of the earliest studies is the
biologically inspired Retinex algorithm [21]. The
method is based on the observations that planar sur-
faces and shadows have smooth intensity differences,
while adjacent regions of various objects have sharp
reflectance changes since the difference between the
intensities is large. Hence, it can be concluded that
large gradient changes usually occur due to reflectance
changes, while small gradients are related to the shad-
ing element. Over the years, the Retinex algorithm has
been modified and exploited in various studies. For
instance, it is combined with a non-local reflectance
constraint, where it is assumed that two pixels having
the same chromaticity texture vectors have the same
reflectance [22]. In another method it is assumed that
small patches should have similar reflectance, and an
energy function is optimized with constraints assign-
ing larger weights to the spatially local neighboring
pixels [5]. In the cluster-based algorithm, pixels with
a similar reflectance are clustered, and a model is
formed that describes the connections and relations
between these groups [23].

The SIRFS algorithm is designed to decompose an
image containing a single masked object into several
intrinsics by making use of a multi-scale optimiza-
tion method relying on prior information [24]. In the
generative and probabilistic algorithm, a Dirichlet pro-
cess Gaussian mixture model is utilized together with
Markov chain Monte Carlo sampling methods [25].
In another intrinsic image study, an RGB-D image
is used to estimate the reflectance and shading by
making use of an optimization method [26].

2.2 Learning-based Algorithms
After their efficiency is exploited in a wide range
of applications in computer vision, both supervised
and unsupervised learning-based strategies are utilized
to provide a solution to the field of intrinsic image
decomposition.

Most of the learning-based strategies in the field
of intrinsic image decomposition do not build their

models on the well-established fundamentals of tradi-
tional image formation [27]. Hence, even if the perfor-
mance of these data-dependent algorithms surpasses
the traditional intrinsic image decomposition methods
quantitatively, their performance is lacking qualitative
investigations. From this motivation, Baslamisli et al.
created a learning-based strategy by combining the
ideas of the best of the two worlds. They investi-
gated the capabilities of the proposed convolutional
neural network framework which relies on a physics-
based reflection model and utilizes the high-frequency
components of both the reflectance and shading ele-
ments of a scene [27]. After the supervised models
have proved their effectiveness in the field of intrin-
sic image decomposition, their usage in this domain
gradually increased. They are utilized either to purely
perform intrinsic image decomposition or to enable
the usage of image decomposition as an intermedi-
ate step to improve the performance of many different
computer vision pipelines [28–34]. Nevertheless, in
several studies, researchers have stressed their con-
cerns about developing supervised frameworks by
stating that a limited number of datasets contain accu-
rate intrinsic elements which is not surprising since
obtaining ground truths for both the reflectance and
shading is burdensome. From this motivation, sev-
eral unsupervised models are created to tackle the
ill-posed nature of intrinsic image decomposition and
to estimate the intrinsics of the scenes [35–37].

Although obtaining the intrinsic elements from
a single image is applicable in numerous computer
vision applications, several learning-based studies
guide their estimations by using additional inputs,
such as the distance sensor measurements, i.e., depth
maps, based on the motivation that these sensors
are now widely present in many capturing devices.
One of the earliest attempts to find the illumination
intrinsic of the scene by incorporating a depth map
is performed by Ebner to improve the performance
of his learning-free computational color constancy
method [38]. In more recent years, there have been
several works in the field of intrinsic image decompo-
sition that utilize distance measurements to guide their
learning-based models to estimate a more accurate
reflectance and shading for various applications [26,
39–42].

3 Applications
Different computer vision pipelines, and applications
benefiting from image processing utilize intrinsic
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image decomposition algorithms. For instance, the
field of robotics is one of the areas where intrinsic
images are widely used. In the study of Krajnı́k et
al., a road-following method is designed for mobile
robots that operate in outdoor environments [43]. The
pathways are detected by using intrinsic images, and
the robot is steered along these pathways. In the
work of Strisciuglio et al., a CNNs-based intrinsic
image decomposition algorithm is used in the com-
puter vision pipeline of a gardening robotics applica-
tion [44]. The robot is designed for automatic bush
trimming and rose pruning. In the study of Brandao et
al., it is aimed to predict the friction for robot locomo-
tion, which is the mutual name for methods robots use
to move from one place to another [45]. The Retinex
algorithm is used to extract the shading element of the
scene that is utilized to estimate the friction coefficient
between surfaces and a robot’s foot.

Apart from the field of robotics, the low-level fea-
tures of images are used in applications related to
security. In the study of Li et al., intrinsic image
decomposition is used in a license plate recogni-
tion algorithm. The reflectance element is utilized for
license plate localization [46]. In the study of Tong et
al., the shadow effect in road scenes is weakened by
using intrinsic images [47]. The developed algorithm
is able to weaken the shadows without causing any
color deviation and to provide promising results for
road region extraction. In the work of Li et al., a 3D
face mask presentation attack detection algorithm is
developed by utilizing the reflectance image, where
the intensity variation features are extracted by using
a 1D CNN model [48].

Intrinsic images are also used in classical image
processing tasks such as classification, segmentation,
and enhancement. In the work of Kang et al. [49],
intrinsic image decomposition is used in a hyperspec-
tral image classification pipeline where it removes
the redundant information caused by the shading ele-
ment of the hyperspectral image, i.e., intrinsic image
decomposition enables the algorithm to carry out the
pixel-wise classification by only using the reflectance
image. In the study of Baslamisli et al. [30], a super-
vised end-to-end CNN model is introduced which
explores the relationship between intrinsic images
and semantic segmentation, and jointly estimates the
intrinsic and semantic features of a scene. Hence,
intrinsic image decomposition aids the task of seman-
tic segmentation, while semantic features also help
to estimate the shading and reflectance components.
In the work of Ren et al. [50], which is a low-light

enhancement study, a Retinex-based intrinsic image
decomposition method is used to estimate a piece-
wise smooth illumination and a noise-suppressed
reflectance for improving the visual quality of the
image. In the study of Yue et al. [51], a contrast
enhancement method based on intrinsic images is pro-
posed. The decomposition is carried out in the V chan-
nel of the HSV color space where it is assumed that
the reflectance is piece-wise constant and illumination
is locally smooth.

Other applications of intrinsic images are object
recoloring, and surface re-texturing. In the study of
Beigpour and van de Weijer [52], intrinsic image
decomposition is used for the recoloring of objects
illuminated by colored and multiple lights. After an
image is decomposed, the body reflectance is changed
for object recoloring and the specular reflectance is
changed for illuminant recoloring. In the study of
Xu et al. [53], intrinsic images are used in a fabric
image recolorization pipeline which aims at helping
designers to create new color designs for fabric. The
algorithm that integrates intrinsic image decomposi-
tion into a variational framework together with an
image segmentation method is able to preserve yarn
boundary details as well as texture details. In the study
of Bi et al. [54] an intrinsic image decomposition
method based on the L1 norm is proposed which is
utilized in surface re-texturing and 3D object com-
positing applications. For the former application, the
reflectance image is edited and then its product with
the shading element is computed to avoid unrealis-
tic and flat outcomes, while for the latter application
the spatially varying illumination in the shading ele-
ment is estimated via a simplified version of the SIRFS
algorithm [24] and then a 3D object is inserted into the
image, i.e. consistency of the illumination conditions
in the scene is ensured [54].

Lastly, intrinsic image decomposition can also be
utilized in image fusion applications. In the medical
imaging study of Du et al. [55], magnetic resonance
imaging (MRI) and positron emission tomography
(PET) data are fused by utilizing intrinsic image
decomposition. In the pipeline, the illumination and
reflectance are extracted from the MRI image, while
the PET input is separated as normal image and lesion
image. These images are then used to fuse the MRI
and PET data. In the study of Zhang and Ma [14],
a multi-exposure image fusion model is developed
that benefits from intrinsic image decomposition. The
model extracts the reflectance and shading images
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from the input sequence which are later fused indi-
vidually. The model is also able to perform low-light
image enhancement and overexposed image correc-
tion. In the work of Kang et al. [56], two satel-
lite images, the high-resolution panchromatic image,
and the low-resolution multi-spectral image are fused
by using intrinsic image decomposition. The aim of
fusion is to obtain a high-resolution multi-spectral
image where the illumination is considered as the
panchromatic image.

4 Datasets
In the field of intrinsic image decomposition, there are
a few publicly available datasets that have different
characteristics (Fig. 1). The first dataset that contains
explicit labels for the reflectance and shading images
is the MIT Intrinsic Images Dataset and it is formed by
Grosse et al. in 2009 [7]. The benchmark contains 220
images based on scenes created with 20 real objects.
In each scene, a single object is positioned in front
of a plain black background which is captured under
different lighting conditions. The dataset contains the
reflectance and shading components, the binary mask,
the diffuse component, and the specularity informa-
tion of the image. The MPI Sintel Flow Dataset is
introduced by Butler et al., and it is in fact created for
optical flow evaluation but since it also provides the
reflectance image it is used in intrinsic image decom-
position as well [57]. The dataset contains a limited
number of images that are extracted from a 3D fan-
tasy short-film called Sintel. The Intrinsic Images in
the Wild Dataset is introduced by Bell et al., and it
provides the ground images for the reflectance image
of real-world scenes [8]. This large-scale dataset is
formed with the help of human operators. The Multi-
illuminant Intrinsic Image Dataset is created by Beig-
pour et al., and it consists of real photographs of 5
different scenes captured under multi-illuminant and
multi-colored illumination conditions [58]. The scenes
contain a few objects placed in front of a plain black
background and it is a rather small-scale dataset.
The Multi-view Multi-illuminant Intrinsic Dataset is
formed by Beigpour et al., and it consists of 600 high-
resolution images [59]. The scenes contain either plain
black or a partial background. The SUNCG dataset is
proposed by Song et al. and includes a large number
of manually created indoor scenes [60]. This dataset
is also used in other studies as a baseline and it is
modified to add new intrinsics, i.e., surface normals,
and to add more material models for various usage

Fig. 1: Example scenes from datasets. (Left-to-right)
The MIT Intrinsic Images Dataset [7], the MPI Sintel
Flow Dataset [57], the Intrinsic Images in the Wild
Dataset [8], and the IID-NORD Dataset [3].

purposes, i.e., semantic and glossiness segmentation,
inverse rendering [61, 62]. The CGIntrinsics dataset
is formed by Li and Snavely in 2018 to assist the
researchers aiming to solve the problem of intrinsic
elements in Internet images of real-world scenes [63].
The dataset is generated by taking the textures and the
models of the indoor scenes of the SUNCG dataset.
The CGIntrinsics benchmark contains 20k high high-
quality rendered scenes via the Mitsuba Renderer.
The authors also provide the reflectance elements of
each scene. Recently, we created a large-scale dataset
called IID-NORD by using computer graphics [3].
The dataset consists of indoor scenes with various lay-
outs. A high number of distinct illuminants, textures,
and 3D objects are used to increase the variety of the
dataset.

5 Evaluation Metrics
There are two evaluation methods that have been
specifically designed for the task of intrinsic image
decomposition, namely the local mean squared error
(LMSE) [7] and the weighted human disagreement
rate (WHDR) [8]. While the former is an objective
error metric, the latter is based on human judgments.
Since in this study, we focus on the objective eval-
uation techniques, we do not further discuss WHDR
for which the reader may refer to the work of Bell et
al. [8].

LMSE is widely used in the field of intrinsic image
decomposition to evaluate the algorithms. LMSE is
based on the classical mean squared error and it
is computed by averaging MSE over overlapping
patches. LMSE has difficulties in presenting the actual
performance of an algorithm [6, 12], i.e., the avail-
able information in the extracted intrinsic images and
the LMSE score have a tendency not to coincide.
Also, when large areas with constant reflectance are
decomposed correctly, often a very low LMSE score
is obtained irrespective of the remaining parts of the
image [6].
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In several intrinsic image decomposition stud-
ies the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) are utilized along-
side LMSE to benchmark the algorithms [26, 64].
PSNR computes the peak signal-to-noise ratio in deci-
bels (dB) between the ground truth and processed
images [65]. Due to pixel-wise calculations, PSNR
does not consider the neighboring relationships of
the image elements, hence the scores do not neces-
sarily reflect the available information. On the other
hand, SSIM is inspired by the top-to-bottom assump-
tion of the human visual system and it is based on
patch-wise computations, thus it takes the local spatial
information into consideration [66]. SSIM is a percep-
tual quality metric that regards the structure, contrast,
and luminance elements of the images to analyze the
structural similarity between the ground truth and pro-
cessed images. SSIM outputs a score in the range
[0, 1], where a score closer to 1 refers to a better result.
SSIM can be computed as follows [66];

SSIM =
(2µI1µI2 + C1)(2σI1I2 + C2)

(µ2
I1

+ µ2
I2

+ C1)(σ2
I1

+ σ2
I2

+ C2)
(2)

where, I1 and I2 represent the ground truth and out-
put image, µ, σ, and σ2 are the mean, covariance,
and variance, respectively, while C1 and C2 are small
constants. It is worth noting that to prevent any prob-
lems related to viewing conditions, later on, SSIM
is modified and the multi-scale SSIM (MS-SSIM) is
introduced [67].

Rarely, the correlation (CORR) between the esti-
mated intrinsics and the ground truths is used in intrin-
sic image decomposition studies to analyze the perfor-
mance of algorithms [68]. Correlation measures how
similar two images are in terms of intensity. A high
correlation score indicates that the estimated intrinsic
image closely matches the ground truth, while a low
correlation score demonstrates that there are discrep-
ancies between the estimated intrinsic and the ground
truth [69].

While these metrics exist for the analysis of intrin-
sic images, there is a need for developing and con-
sidering different error metrics to better evaluate the
outcomes of the intrinsic image decomposition algo-
rithms as explained in Sec. 1. Thereupon, we discuss
three existing metrics that are used in various image
processing tasks but to the best of our knowledge
have not been utilized in the field of intrinsic image
decomposition yet.

The visual information fidelity (VIF) computes a
similarity score by measuring how much of the infor-
mation that can be extracted from the ground truth
image can also be derived from the output image [70].
VIF is calculated in the wavelet domain by utilizing
Gaussian scale mixtures C, which are a random field
that can be presented as the product of two indepen-
dent random fields. VIF outputs scores in the range
[0, 1], where scores closer to 1 indicate better results.
The VIF score can be calculated as follows;

V IF =

∑
k∈w SRF (C⃗

T,k; F⃗T,k|sT,k)∑
k∈w SRF (C⃗T,k; E⃗T,k|sT,k)

(3)

where, SRF represents the set of spatial locations for
the random field, w are the subbands of the image,
C⃗T,k presents T elements of Ck, F⃗T,k and E⃗T,k

denote the T elements of the output image and ground
truth images in one subband, respectively, and sT are
the model parameters of the associated image.

The feature similarity index (FSIM) takes the local
structures and contrast information of the images into
account [71]. FSIM is calculated by utilizing the
phase congruency (PC) which is contrast invariant,
and the gradient magnitude (GM). The PC element
presumes that points having a maximal phase in the
frequency domain correspond to perceivable features.
This assumption correlates with the human visual sys-
tem’s behavior while it detects significant features in
images. GM is added during the computation of FSIM
to consider the contrast information of a scene since
the contrast information affects the human visual sys-
tem during perception. FSIM can be calculated as
follows:

FSIM =

∑
x,y∈N

(FPC(x, y) · FGM (x, y)) · PCmax(x, y)∑
x,y∈N

PCmax(x, y)
(4)

where, FPC(x, y) and FGM (x, y) indicate the PC
and GM components of the image, respectively,
PCmax(x, y) is the maximum PC value of the input
images, and N is the number of pixels in the image.
Similar to SSIM and VIF, FSIM presents scores in the
range [0, 1] and results closer to 1 correspond to supe-
rior results. Note that FSIM is calculated for grayscale
images but it has a straightforward extension to RGB
images.

The ∆E (CIEDE2000) computes the color differ-
ence between two CIELAB samples, and in case we
calculate the color difference between two images in
CIELAB color domain, we average the results of the
individual samples [72, 73]. ∆E can be calculated
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by investigating the lightness, chroma, and hue com-
ponents. It is known that ∆E scores less than 1 are
unnoticeable to human observers, while a score in the
range [1, 4) might also be imperceptible [2, 74].

In the following, we utilize the SSIM, FSIM,
and VIF metrics to introduce an ”ensemble of met-
rics”, and we modify the classical ∆E metric to form
the ”imperceptible weighted score”.

5.1 Proposed Metrics
We form our metrics by considering two observa-
tions: (i) several studies suggest that evaluation meth-
ods correlating with the human visual system have a
tendency of computing more reliable scores [75–77],
and (ii) it is widely known that computations carried
out in scale-space help us to avoid problems aris-
ing due to unknown display resolution and viewing
distance. Based on these observations we introduce
the ensemble of metrics (EM) which aims at analyz-
ing the reflectance and shading components together
in a robust manner, and the imperceptible weighted
score (IWS) which focuses on the evaluation of the
reflectance component.

5.1.1 Ensemble of Metrics

The ensemble of metrics utilizes the SSIM, FSIM, and
VIF metrics in scale-space to evaluate the outcomes
of intrinsic image decomposition algorithms. We have
chosen these metrics for the ensemble since they
focus on features such as color, structure, contrast,
luminance, and the amount of information coinciding
between the ground truth and the estimated intrinsic
image which are important for the results of intrinsic
image decomposition methods.

For the ensemble of metrics, first we compute the
Gaussian and Laplacian pyramids of the input image
and the estimation, where we determine the number
of levels adaptively based on the image resolution as
follows:

L = ⌊log(min(h,w))/log(2)⌋ (5)

where, h and w are the width and height of the image.
We utilize both of the pyramids since they high-

light different features of an image [78]. While the
Gaussian pyramid preserves the low-frequency com-
ponents of the image, i.e., color information, the
Laplacian pyramid functions like a high-pass filter and
contains the high-frequency elements of an image, i.e.,
fine details. The usage of both pyramids allows us

to take into account various details at distinct scales,
thus we can investigate the outcomes of algorithms in
greater detail. Moreover, by considering the high- and
low-frequency separately, we can analyze the results
of intrinsic image decomposition algorithms with met-
rics that are better suited to investigate certain features
appearing more explicitly in one pyramid compared to
the other.

We calculate the SSIM, VIF, and FSIM scores at
every level in the Gaussian and Laplacian pyramids,
however, we do not use all of them for evaluating
both the reflectance and shading components. We uti-
lize all three metrics for the evaluation of the shading
element, whereas we only use the SSIM and the col-
ored FSIM (FSIMc) for the analysis of the reflectance.
We discard the VIF score for the reflectance since
it is calculated in the luminance channel of images,
e.g., the analysis of the reflectance and shading results
in the same outcome. Furthermore, in the Gaussian
scale-space, we compute the SSIM score by utiliz-
ing each feature given in its standard formulation,
whereas we do not consider the luminance component
in the Laplacian pyramid since it is irrelevant. On the
other hand, we regard all components of the FSIM
and VIF in both pyramids since they are sensitive to
the information in the pyramids. After we compute
the scores at each level of both pyramids, we linearly
combine the corresponding scales for the three metrics
separately as in the following:

PR
M ′(i) =

GR
M ′(i) + LR

M ′(i)

2
(6)

PS
M (i) =

GS
M (i) + LS

M (i)

2
(7)

where, P is the mean of the Gaussian (G)
and Laplacian (L) pyramids, R and S are the
reflectance and shading elements, respectively, i is
the scale, M ′ ∈ {SSIM,FSIMc} and M ∈
{SSIM, V IF, FSIM}.

Since each P contains scores obtained at distinct
scales, we have to fuse these scores into an overall
score for every metric. To merge the scores, we take
inspiration from the study of Wang et al. where the
MS-SSIM metric is designed based on human obser-
vations [67]. During the experiments of Wang et al., it
is realized that the human visual system gives differ-
ent importance to the same error at distinct scales. In
other words, even when all the images at various lev-
els in the pyramid have the same statistical error, the
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perceived quality changes in each scale. The assigned
importance is approximately Gaussian, i.e., we give
more importance to the middle scales of the pyramid.
Therefore, in the ensemble of metrics, we merge the
scores at different scales by utilizing a Gaussian-based
weighting strategy to assign distinct weights to each
level. In other words, we weight the PR

M ′ and PS
M

scores in a Gaussian manner with a standard deviation
σ of (L− 1)/5 as follows:

PR
M ′ =

∑
i P

R
M ′(i− L/2) e−

i2

2σ2 (8)

PS
M =

∑
i P

S
M (i− L/2) e−

i2

2σ2 . (9)

Afterwards, we linearly combine the scores for the
reflectance and shading as follows:

EMR = 1
2

∑
j P

R
M ′(j) (10)

EMS = 1
3

∑
j P

S
M(j) (11)

where, subscript j is the jth element of M ′ and M ,
and EMR and EMS represent the ensemble of met-
rics scores for the reflectance and shading elements,
respectively.

Lastly, we average EMR and EMS to compute
a global EM score. It is worth mentioning that while
we compute the FSIM, we discard the coarsest scale
of the pyramids since FSIM also utilizes the scale-
space in its calculations which causes ambiguities in
the coarsest scale of the pyramids in EM.

5.1.2 Imperceptible Weighted Score

As we discussed in Sec. 1, in cases where a par-
ticular intrinsic image needs to be analyzed in an
application, i.e., usually only the reflectance is utilized
for image segmentation tasks, an evaluation method
for the given intrinsic is beneficial. Based on this
fact, apart from EM, we introduce the imperceptible
weighted score that is designed to evaluate the esti-
mated reflectance. This score is built upon the classical
∆E (CIEDE2000) metric which focuses on the color
difference of two CIELAB samples, and can be used
to compute the color discrepancy between images [72,
73]. ∆E is calculated in the CIELAB color domain
by considering the chroma, lightness, and hue com-
ponents. It is known that ∆E scores less than 1 are
imperceptible, while outcomes in the range [1, 4) may
also be unnoticeable to human observers [2, 79]. In our

previous study, we took these findings into consider-
ation and modified the conventional ∆E metric [13].
We computed the ∆E score at each scale of the Gaus-
sian pyramid since color is a low-frequency feature of
images. Afterwards, we counted the number of pix-
els having a ∆E score in the range [0, 4) at each level
separately. Then, we divided the number of pixels
having an unnoticeable ∆E score by the total num-
ber of pixels in the corresponding level. Subsequently,
we weighted these ratios with a Gaussian function
as in the EM score and summed them to find the
imperceptible ∆E score.

In this study, we further modify the impercepti-
ble ∆E score to overcome an observed shortcoming
which is described in the following. Let us assume
that we have two images with the same resolution,
and each of them has n number of pixels with a ∆E
score less than 4. In this case, even if the remaining
pixels would have significantly different ∆E scores,
we would obtain the same imperceptible ∆E for both
images since we did not take the pixels having a ∆E
greater than or equal to 4 into account. In this study,
we modify our proposed metric and introduce the
imperceptible weighted score to provide a simple solu-
tion to this problem, which is where the imperceptible
weighted score differentiates from its previous version
introduced in our recent study [13]. After we count
the number of pixels having a ∆E score in the range
[0, 4) at a certain level (sn), we also count the number
of pixels having a ∆E score greater or equal to 4 (s′n)
at the corresponding scale. Then, we form a penalty
term (ϵ) by taking the ratio of sn and s′n, and multi-
ply it with the mean ∆E score of the pixels having a
perceivable ∆E score (∆Ep) as follows ϵ = sn

s′n
∆Ep.

Subsequently, we add the penalty term ϵ to the
mean ∆E score of the pixels having an imperceptible
∆E score. We carry out this computation at each level
of the pyramid. Then, we weight the scores with in a
Gaussian manner as in the EM score as follows:

IWSsn = (i− L/2) e−
i2

2σ2 (mean(∆Esn) + ϵsn).
(12)

Finally, we take the mean of all scores to find IWS
as follows:

IWS =
1

i

∑
i

IWSsi , (13)

where results closer to 0 indicate that the estimated
reflectance is approximating the ground truth.
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6 Experiments
In our experiments, we focus on demonstrating the
usability of our proposed metrics and metrics that have
not been considered in the field of intrinsic image
decomposition. We would like to note that we do not
benchmark intrinsic image decomposition algorithms
on various datasets to present their efficiency since
such experiments have already been carried out in
several studies in detail. The reader may refer to the
following studies Bonneel et al. [6], Ulucan et al. [3],
and Garces et al. [12] for further information.

6.1 Experimental Setup
As mentioned in Sec. 2, intrinsic image decomposi-
tion methods have distinct input requirements. In the
experiments, we utilize intrinsic image decomposi-
tion algorithms that require only a single RGB input
image as input. We preferred to use these methods due
to various reasons explained in the following. First
of all, not all intrinsic image decomposition bench-
marks contain image sequences, while real-world
single images are widely available. Secondly, it is
laborious to create image sequences in a proper for-
mat. Thirdly, for applications utilizing intrinsic image
decomposition in their pipelines, input stacks may not
be available. Fourthly, depth information is not always
available for images. Lastly, requiring user interac-
tion might be inefficient. In other words, single RGB
input images are easy to access and they reflect the
requisites of different computer vision applications.
Consequently, while selecting the methods we use in
our experiments, we choose among the algorithms that
require a single RGB input image the ones that rely
on different approaches such as utilizing local spa-
tial information, being based on convolutional neural
networks, relying on optimization methods, and using
intrinsic image decomposition in another image pro-
cessing task. By choosing algorithms with distinct
approaches we increase the variety of the investigation
we conduct in this study. We select the following algo-
rithms for our experiments; Retinex [7, 21], Zhao [22],
Shen [5], SIRFS [24], Lettry [35], and Ren [50],
whose implementations we acquire from the official
webpages of the authors and utilize without any opti-
mization. Apart from these algorithms, we decompose
all images also by a baseline method that is introduced
in the study of Bonneel et al. [6]. This method is a sim-
ple technique that extracts the reflectance and shading
images without considering any important aspect of

the intrinsic image decomposition problem. There-
fore, any method particularly designed to compute
intrinsic images is expected to outperform the baseline
algorithm which assumes that the chromaticity image
(Ich) is the reflectance and the square root of the direct
average of channels (Y ), e.g., grayscale illumination,
is the shading. Ich and Y can be obtained as in the
following;

Ich =

(
R

R+G+B
,

G

R+G+B
,

B

R+G+B

)
(14)

Y =

√
R+G+B

3
(15)

where, R,G and B represent the color channels of the
image.

In addition to the algorithms, we select 2 datasets
with different characteristics, i.e., containing single-
masked images and complex scenes, for our experi-
ments. We benchmark the algorithms on a subset of
the IID-NORD Dataset [3], and the well-known MIT
Intrinsic Images Dataset [7] by using an Intel i7 CPU
@ 3.5 GHz Quad-Core 16 GB RAM machine.

In order to statistically analyze the algorithms, we
use the following 10 metrics; LMSE, PSNR, SSIM,
MS-SSIM, FSIM, FSIMc, VIF, CORR, EM, and ∆Ei.
By considering a wide range of metrics we aim at
emphasizing the need of considering different met-
rics in the field of intrinsic image decomposition.
The employment of various metrics may lead to the
enhancement of algorithms since taking distinct eval-
uation strategies with different characteristics into
account allows us to notice various shortcomings in
the designed algorithms.

6.2 Experimental Results
The statistical results of the algorithms on both bench-
marks are provided in Table 1. On the MIT Intrinsic
Images dataset, all metrics except for the LMSE high-
light SIRFS as the best-performing algorithm which
also coincides with the visual investigation provided
in Fig. 2. As mentioned in Sec. 5, LMSE discards
local spatial cues, thus it may not reflect the actual per-
formance of intrinsic image decomposition methods,
while evaluation strategies such as FSIMc and FSIM
take the local structures into account, hence regard
the local spatial information. For instance, in Fig. 2
we provide random examples from the datasets. It is
observable that the decomposition of Zhao, which is
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Table 1: The statistical results of algorithms. IWS is given in 10−3. CORR is normalized into the range [0, 1]. The
best scores for each metric are highlighted. The last column gives the mean run time in seconds. The run time of
Ren is not provided since its code is binary and does not only output the intrinsic images. A fixed threshold is used
for Retinex. Also, SIRFS is not evaluated on IID-NORD, since it only works on inputs with single-masked objects.

LMSE PSNR CORR SSIM MS-SSIM FSIM FSIMc VIF EM IWS Run time

M
IT

Baseline 0.078 10.924 0.924 0.718 0.697 0.786 0.859 0.223 0.618 0.0024 0.031

Retinex 0.091 11.128 0.937 0.726 0.720 0.795 0.882 0.179 0.631 0.0017 3.106

Zhao 0.036 12.156 0.951 0.785 0.780 0.815 0.908 0.363 0.692 0.0019 3.671

Shen 0.062 13.753 0.949 0.698 0.756 0.725 0.864 0.298 0.709 0.0014 38.097

SIRFS 0.042 13.812 0.959 0.803 0.797 0.833 0.911 0.377 0.724 0.0011 171.018

Lettry 0.056 12.275 0.944 0.527 0.722 0.706 0.873 0.122 0.639 0.0018 13.833

Ren 0.079 9.233 0.932 0.703 0.713 0.816 0.869 0.176 0.605 0.0035 −

II
D

-N
O

R
D

Baseline 0.093 10.030 0.785 0.599 0.636 0.776 0.611 0.391 0.622 12.8850 0.242
Retinex 0.101 10.581 0.805 0.658 0.688 0.786 0.677 0.386 0.652 2.2415 53.634

Zhao 0.102 6.257 0.659 0.305 0.633 0.772 0.606 0.117 0.441 1.9746 40.219

Shen 0.068 11.457 0.789 0.575 0.612 0.708 0.681 0.313 0.612 3.2274 390.300

Lettry 0.097 12.093 0.788 0.621 0.710 0.766 0.702 0.235 0.643 2.6300 220.351

Ren 0.094 9.562 0.784 0.505 0.670 0.738 0.653 0.121 0.585 1.4802 −

MIT Intrinsic Images Dataset
Input and Ground Truths SIRFS Zhao Retinex

IID-NORD
Input and Ground Truths Ren Shen Retinex

Fig. 2: Visual comparison of algorithms.

the best-performing method in terms of LMSE, has ambiguities, especially in the reflectance component,
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MIT Intrinsic Images Dataset
Input and Ground Truths Baseline (0.708, 0.0084) Ren (0.596, 0.0026)

Shen (0.782, 0.0034) SIRFS (0.772, 0.0076)

IID-NORD
Input and Ground Truths Baseline (0.484, 0.1470) Shen (0.539, 0.0180)

Retinex (0.596, 0.0229) Lettry (0.607, 0.0222)

Fig. 3: Comparison of the methods on both benchmarks. The first score given in parenthesis corresponds to EM,
while the second score is IWS.

while SIRFS decomposes the reflectance component
more accurately which improves its IWS and EM
scores on average.

On the IID-NORD dataset, the algorithms’ effi-
ciency decreases when they decompose images con-
taining complex textures and strong shadow casts.
Almost all metrics highlight a different algorithm as
the best-performing method (Table 1). According to
the LMSE scores Shen outperforms the other meth-
ods but as provided in Fig. 2, it may face difficulties
in extracting the shading which is reflected in its EM
score and it may output a reflectance which con-
tains ambiguities that affect its average IWS. The
reason behind LMSE pointing out Shen as the best-
performing method can be explained by the fact that
when large regions of constant reflectance are pre-
served during decomposition, LMSE tends to out-
put low scores [6]. In terms of PSNR, MS-SSIM,
and FSIMc, Lettry outputs more accurate intrinsics
than the other algorithms. However, the visual results
given in Fig. 3 present that Lettry may provide color-
distorted intrinsic images which negatively affects its
EM score and IWS. According to the CORR, SSIM,
FSIM, and EM scores, Retinex surpasses the other

algorithms, while the best IWS is obtained by Ren.
In the random examples provided in Fig. 2, we can
observe that each method decomposes distinct regions
of the images accurately, and handles image features
such as strong shadow casts, highlights, and speculari-
ties with different accuracy. Hence, it is not surprising
that the metrics highlight different algorithms as the
best-performing method.

We present further results in Fig 3 where we
also provide the EM scores and IWS of the images.
The proposed evaluation methods produce statisti-
cal results coinciding with the perceptually available
information with the intrinsics. If for a certain image,
the EM score and IWS highlight different algorithms
as the best-performing method, it can be deduced that
while one of the intrinsic images is accurately esti-
mated, there is an ambiguity in the estimation of the
other one.

When we consider all of these investigations, we
can infer that it is important to take into account
the individual characteristics of the intrinsic images
and weigh the outputs in a balanced manner to pro-
vide a reliable statistical score. Moreover, when we
consider the fact that the results of all evaluation
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strategies may not coincide with the actually avail-
able information in the output image [80], we can
deduce that it is important to consider different metrics
while evaluating an algorithm. For instance, bench-
marking a method designed for a computer vision
pipeline that utilizes the color features with LMSE or
guiding a learning-based intrinsic image decomposi-
tion model by using LMSE as the loss function may
not reflect the actual performance of the algorithm if
large regions of constant reflectance are decomposed
accurately. Therefore, different metrics such as IWS
may be included to evaluate the outcomes or train the
models for the task at hand.

As a final note, since benchmarking the algorithms
by using metrics correlating with the human visual
system mostly provides more accurate results, inves-
tigating the visual outputs of the algorithms together
with their statistical outcomes may help us to under-
stand which type of error metrics provide more reli-
able statistical results. Consequently, we might design
more accurate benchmarking strategies in the field of
intrinsic image decomposition.

7 Conclusion
Intrinsic images are the low-level features of input
scenes, and they can be utilized in various applica-
tions ranging from robotics to object recoloring. The
benefits it provides make intrinsic image decompo-
sition an attractive research field, while the ill-posed
nature of the problem challenges the researchers. Due
to both the advantages it provides and the challenges
it holds, the field of intrinsic image decomposition
has been extensively studied over the last decades.
In this study, we addressed the challenges in this
field and provided an overview of the intrinsic image
decomposition algorithms, datasets, and applica-
tions. Furthermore, we discussed the shortcomings of
the existing evaluation strategies and provided new
perspectives by introducing two new error metrics,
namely the ensemble of metrics and the imperceptible
weighted score, that are based on biological findings.
We would like to mention that to further prove and
analyze the proposed metrics it would be helpful to
conduct experiments with human subjects. In such an
experiment, the participants could rate the outcomes
of algorithms and we could investigate if the ratings
are correlating with the scores of the metrics.

Data availability. The datasets analyzed in this study
are publicly available.
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