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Abstract
Surface normal vectors provide cues about the local geometric features of the scene which
are utilized in many computer vision and computer graphics applications. Thus, the esti-
mation of surface normals by utilizing structured range sensor data is an important research
field. Thereupon, we propose a learning-free algorithm to estimate the surface normal vec-
tors from depth maps. Our simple yet effective method relies on computations carried out
in scale-space. Our main idea is to estimate the surface normals which cannot be prop-
erly computed in the finest scale from the coarser scales. Our method can estimate the
surface normals even for images included in datasets that have challenging characteris-
tics such as noisy real-world data or significantly large planar regions that either have a
small or no gradient change. We analyze our algorithm’s performance by utilizing 5 bench-
marks, namely, the MIT-Berkeley Intrinsic Images dataset, the New Tsukuba Dataset, the
SceneNet RGB-D dataset, the IID-NORD dataset, and the NYU Depth Dataset V2, and by
using 2 different evaluation strategies. According to the experimental results, our method
can estimate surface normals efficiently without requiring neither complex computations
nor huge amounts of data.

1 Introduction
The surface normal vectors help us to measure the angle between the incoming light ray
and the fragment, i.e. the point the ray hits the object [1]. For a differentiable manifold, the

1This is the preprint version of the article published in SN Computer Science which is accessible via
https://link.springer.com/article/10.1007/s42979-024-03098-4 (https://doi.org/10.1007/s42979-024-03098-4).
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normal space at a certain point consists of a set of vectors that are orthogonal to the tangent
space at this point. We utilize the normals in computer graphics to find the orientation of
a surface with respect to the light source and to determine the orientation of the surface
vertices. Also, surface normal vectors serve as local descriptors in many applications such as
terrain mapping, navigation, object segmentation, and 3D object recognition by providing us
the light direction, curvature, and shape of the object [1–4]. They can either be used directly
or as auxiliary information. Due to their wide range of usability in computer vision tasks,
estimating the surface normal vectors accurately with a low computational cost is substantial.

As the requirement of utilizing surface normals in different tasks increases, the efficient
computation of normal vectors becomes more desired. Over the years both traditional and
data-dependent algorithms have been proposed in the field of surface normal estimation [4–
16]. Traditional methods usually make use of point clouds, and depth maps or disparity
maps [3, 9]. Point clouds are mostly unstructured and distorted by noise, therefore feature
extraction can become troublesome and procedures with high computational cost might be
needed [4, 17]. On the other hand, depth maps contain organized sensor measurements and
have a close geometric relationship with surface normals. Thus, they have gained more atten-
tion in this field. Alongside a distance measurement, data-dependent models may also use an
RGB input image to estimate the surface normals. Recently, these models are widely used
for the task of surface normal estimation, yet they have certain shortcomings. They require a
high amount of unbiased data to estimate the surface normals accurately, their performance
can be affected by adversarial attacks, providing a test image having a small difference with
respect to their training set can decrease their performance, and usually, their computational
cost is higher than traditional algorithms due to their training phase [4, 18–21]. Furthermore,
in the field of normal estimation, many benchmarks are collected by using certain devices
whose sensor quality affects the ground truth information, i.e. the measured depth data can be
incomplete and noisy [22–24]. In several studies, the missing information is filled by utilizing
various techniques [3]. Hence, the labeled data used in the training phase of data-dependent
methods can be biased, and even inaccurate which may be a reason why data-dependent mod-
els still perform poorer than desired, i.e. generally, the mean proportion of good pixels is less
than 80% [4, 10, 11].

Based on these observations, recently, we introduced a learning-free simple yet effec-
tive algorithm that estimates the surface normals from both complete and incomplete depth
maps [25]. While designing our method, we exploited the close geometric relationship
between depth maps and surface normals, and between the shading element of images and
surface normals. Our algorithm makes use of the scale-space to provide more accurate esti-
mations, and to deal with large planar regions and noisy measurements. In our previous study,
we investigated the effectiveness of our method by reporting the performance of our technique
on 2 benchmarks. In this study, we extend our previous work by providing a deeper analysis
and by presenting results on 3 additional datasets. We utilize challenging benchmarks which
contain significantly large planar regions and noisy real-world depth measurements which are
features that were not investigated in our previous work.

This paper is organized as follows. In Sec. 2 we provide a brief literature review on
geometry-based surface normal estimation methods. In Sec. 3 we introduce the proposed
method. In Sec. 4 we present our experimental setup and in Sec. 5 we discuss the results. In
Sec. 6 we conclude our work with a brief summary.
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2 Related Work
Over the decades, several surface normal estimation algorithms based on distinct approaches
have been put forward [5, 13]. We provide a brief literature review on geometry-based
algorithms which we utilize in our experiments for comparison.

Surface normals and depth maps have a close geometric relationship. The differentiation
of depth maps provides us with surface normals. Thereupon, a straightforward method, which
we call baseline, to estimate the normals of a scene is to compute the pixel-wise difference of
the consecutive neighboring pixels in the depth map, and to assume that the z-axis points to
the camera (Eqn. 1).

nix = p(i+1)x − pix niy = p(i+1)y − piy niz = −1 (1)

where, ni = [nix , niy , niz ] is the surface normal, p(i+1) is the neighboring pixel of our pixel
of interest pi, and x and y are the horizontal and vertical directions, respectively.

The local neighborhood of pixels is frequently exploited in surface normal estimation
algorithms [5]. The averaging-based techniques make use of the neighboring relationships as
follows;

ni =
1

k

k∑
j=1

wij

[hij − pi]× [hij+1
− pi]

|[hij − pi]× [hij+1
− pi]|

(2)

where, hij and hij+1
are neighbours of pi, wij is the weight, which is 1 in the classical

method, and × represents the cross-product operation.
In the angle-weighted averaging technique, wij is the angle between the crossed vectors

which can be calculated as follows;

wij = cos−1

( ⟨hij − pi, hij+1 − pi⟩
|hij − pi||hij+1

− pi|

)
. (3)

In the area-weighted averaging technique, the normal of each triangle is weighted
according to the magnitude of its area as follows;

wij =
1

2

(
[hij − pi]× [hij+1

− pi]
)
. (4)

Aside from averaging methods, interpolation techniques are also used to estimate the
surface normals. In the bicubic interpolation algorithm, the surface normals are estimated by
applying bicubic interpolation on the depth map and utilizing quadratic extrapolation on the
boundaries. Subsequently, the diagonal vectors are acquired and crossed to estimate surface
normals [26].

There are also other algorithms that utilize optimization methods and filters to compute
the surface normals. The SIRFS algorithm formulates an optimization problem to estimate
the shading, illumination, reflectance, depth map, surface normals, and shape from a single
masked image [6]. The filter-based 3F2N algorithm utilizes a horizontal and a vertical gra-
dient filter, and a mean/median filter to estimate the surface normals [4]. The 3F2N method
requires the image principal point and the camera focal lengths as priors.
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3 Proposed Method
We introduce a learning-free surface normal vector estimation algorithm that carries out com-
putations in scale-space whose effectiveness has been proven in different studies related to
depth map and surface normal vectors estimation [12–14, 27–30]. Contrary to these meth-
ods, we do not use any optimization methods and data-dependent models or perform complex
computations. In the following, we present our simple yet effective algorithm that estimates
the surface normals from complete depth maps.

Our algorithm performs surface normal estimation in scale-space to take into account
possible planar regions in the depth maps, fine details, and sharp edges. We determine the
number of levels in the image pyramid adaptively by considering the fact that local informa-
tion degrades significantly in the coarser scales of the pyramid [31, 32]. Since we would like
to preserve local information which is important for estimating the surface normals, we do
not use the coarser scales in our algorithm. After practical analysis, we determined that uti-
lizing half of the number of possible levels that can be reached in scale-space allows us to
respect local information while preventing high computational costs.

We utilize the classical averaging method to calculate the surface normal vectors [33].
We assume that a depth map is formed by a set of d points P = {p1, p2, ..., pd}, pi ∈ R2.
Then, we calculate the surface normal vector ni = [nix , niy , niz ] for a certain pixel pi, by
using k triangles created by the spatially closest neighbouring pixels Q = {qi1 , qi2 , ..., qik},
qik ∈ P , qik ̸= pi (Eqn. 5). For each pixel pi we utilize 4 triangles to calculate the surface
normal. However, k may decrease when we estimate the surface normals on the boundaries
of the depth map, and when Q contains non-informative elements.

ni =
1

k

k∑
j=1

[qij − pi]× [qij+1
− pi] (5)

where, qij+1 is the neighbouring pixel in the counter-clockwise direction of qij , and × demon-
strates the cross-product operation. It is worth mentioning that each ni is normalized by its
Frobenius norm ni = ni/∥ni∥.

During surface normal estimation, it is important to respect image regions containing
sharp depth changes and edges. Abrupt depth changes may cause ambiguities in these chal-
lenging image regions since multiple distinct manifolds might be considered while computing
the surface normals [7]. In our algorithm, we calculate the surface normals at each level s only
in areas where the measured distance changes slightly. Thereby, we avoid ambiguities that
arise due to any noticeable change in depth information. In other words, we obtain smooth
transitions at edges and regions having sharp depth changes. For a pixel pi, we compute the
surface normal ni at any level only when the depth changes below a certain threshold and does
not equal zero (Fig 1). We practically determined that for the finest scale a threshold of 0.9
is sufficient, whereas this value should be increased 4 times at each consecutive coarser scale
to compute the surface normals accurately. The reason behind this parameter selection proce-
dure can be explained by the nature of scale space, where 1 pixel is represented by 4 pixels in
each consecutive finer scale. We provide our investigation on the threshold in Sec. ??.

After computing the surface normals at each level, we need to look for the surface normals
that could not be calculated at the finest scale. For a pixel whose surface normal could not
be computed at the finest scale, we seek to find the corresponding value at a level where the
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Fig. 1: The surface normal estimates at different scales are presented. The black areas corre-
spond to the regions that do not satisfy the threshold. (Left-to-right) Surface normal estimates
at the first scale, second scale, third scale, and fourth scale.

Fig. 2: The illustration of finding corresponding surface normals from different scales. The
areas enclosed by yellow, red, and orange ellipses are filled from the second, third, and fourth
scales, respectively.

Fig. 3: Estimation of normals from a depth map. (Left-to-right) Scene, depth map, ground
truth, and estimated surface normals.

normal could be calculated. We illustrate this procedure in Fig.2. We fill the areas which are
encircled by a yellow ellipse by benefiting from the estimations at the second scale, while
we recover the areas enclosed by an orange ellipse by utilizing the estimations at the coarsest
level. In rare cases, we might have a pixel pi whose surface normal could not be estimated at
any level. For such pixels, we apply an averaging operation in the pixel’s 3× 3 neighborhood
and assume that the calculated vector corresponds to ni.

As a final step, in order to refine our estimations, we perform a Gaussian smoothing oper-
ation with a small standard deviation σ obtained adaptively based on the image resolution.
A proper choice is σ = 0.08γ where γ = max{w, h}/100, and w and h are the width
and height of the image, respectively. An example of estimating the surface normals via our
method is shown in Fig. 3.

In case the measured sensor data includes missing pixels, we slightly modify our algo-
rithm to avoid any ambiguities caused by the missing regions. In order to handle the missing
pixels, one can fill the depth map by using various techniques, i.e., interpolation, before using
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the data to estimate the normal vectors. However, filling the missing regions might corrupt the
depth data [25]. Hence, utilizing the pre-processed measurements might prevent us to obtain
accurate local descriptors of the scene. Therefore, in order to estimate the surface normal vec-
tors without pre-processing the measured depth maps, we slightly modify our technique by
taking the direct link between the shading element and the surface normal vectors of the scene
into account [34]. Like the surface normals, the shading component contains information on
the orientation of the light source and it can be obtained as follows;

Si = ϕi · ⟨ni,Li⟩ (6)

where ϕ is the light intensity, L is the light direction vector, and ⟨.⟩ represents the inner
product.

As given in the study of Bonneel et al. [35], we assume that the grayscale illumination
of the scene is the shading component S (Eqn. 7). We use this assumption since designing a
method to form the shading image is outside the scope of this work.

S =
√

(r + g + b)/3 (7)

where, r, g, b are the red, green, and blue color channels, respectively.
To estimate the surface normals of incomplete depth maps, first of all, we compute the

normals at each level by utilizing Eqn. 5. Then, we discard the areas containing missing
depth measurements. In order to obtain the estimations for the missing regions, we guide our
computations in the direction of the gradient change of the shading element of the scene. We
determine the gradient direction by utilizing the gradient angle [36].

For each missing pixel in the depth map, we estimate the surface normal by averaging the
neighboring normals sharing the same gradient flow in its 3 × 3 neighborhood (Table 1). If
there exists only one informative neighbor, we directly take it as the surface normal estimate.
In case both neighbors are non-informative, we carry out the normal estimation at other scales.
Subsequently, we perform the same procedure we applied to the complete depth maps. Lastly,
we apply a Gaussian smoothing operation where σ = 0.16γ.

In order to carry out an analysis for the incomplete depth map scenario, in our previous
work, we modified the MIT-Berkeley Intrinsic Images dataset [37] by removing a certain
amount of pixels from the scenes, and we created 2 different sets, namely, easy and hard
set [25]. While for the hard case, regions up to 30% of the pixels in the object are removed, for
the easy case we discard regions up to 5% of the pixels. We provide examples of computing
the surface normals in incomplete depth maps in Fig.4.

Table 1: Determining the gradient flow according to the angle between the
neighboring pixels. x and y specify the location of the image elements.

Angles Neighboring spatial locations
[0◦, 45◦) [180◦, 225◦) (x− 1, y + 1) (x+ 1, y − 1)

[45◦, 90◦) [225◦, 270◦) (x− 1, y) (x+ 1, y)

[90◦, 135◦) [270◦, 315◦) (x− 1, y − 1) (x+ 1, y + 1)

[135◦, 180◦) [315◦, 360◦] (x, y − 1) (x, y + 1)
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Fig. 4: Estimating the surface normals from an incomplete depth map. (Left-to-right) Shading,
incomplete depth map, ground truth, and estimated surface normals.

4 Experimental Setup
In this section, we explain our experimental setup, while providing a brief summary of the
datasets, and the evaluation strategies we utilize to discuss the performance of the proposed
method.

4.1 Datasets
Even though surface normals are widely used in computer vision tasks and they have been
extensively studied over the decades, investigating the efficiency of the designed algorithms is
still troublesome since accurate ground truths for surface normals are lacking in many existing
benchmarks [38]. Therefore, statistically evaluating the algorithms is not always possible
which is one the reasons why researchers also provide visual comparisons in this field.

In our previous work, to investigate our method’s performance, we utilized 2 benchmarks,
namely, the MIT-Berkeley Intrinsic Images dataset [6], and the New Tsukuba dataset [39]. In
this work, we are extending our discussion by demonstrating the performance of the proposed
method on 3 additional datasets. In this subsection, we briefly introduce all the benchmarks
we adopt for evaluating our method (Fig. 5).
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Fig. 5: The benchmarks utilized in this work. (Top-to-bottom) Scene and depth map. (Left-
to-right) The MIT-Berkeley Intrinsic Images dataset, the New Tsukuba Dataset, the SceneNet
RGB-D dataset, the IID-NORD dataset, and the NYU Depth Dataset V2.

The MIT-Berkeley Intrinsic Images Dataset

The MIT-Berkeley Intrinsic Images dataset [6] is the extended version of the MIT Intrin-
sic Images dataset [37]. This benchmark consists of 20 different single-masked objects and
contains ground truths of distinct intrinsic images including surface normals and depth maps.

The New Tsukuba Dataset

The New Tsukuba Dataset contains video sequences of real-world-like scenes that are ren-
dered by computer graphics [39]. This dataset consists of 1800 frames of stereo pairs. The
ground truth disparity maps are provided for each scene, while the ground truth surface
normals are not included in the benchmark.

The SceneNet RGB-D Dataset

The SceneNet RGB-D dataset consists of 5 million of photorealistic indoor scenes generated
by computer graphics [40, 41]. Alongside the RGB scenes, for each scene, the dataset also
contains various intrinsics including the ground truth depth maps. In order to evaluate the
performance of the algorithms, we utilize the validation set.

The IID-NORD Dataset

The IID-NORD dataset is a large-scale dataset which we created in one of our previous stud-
ies to assist the intrinsic image decomposition studies since in the field of intrinsic image
decomposition, finding a benchmark that provides the actual pixel-wise ground truths of vari-
ous intrinsics can be troublesome [38]. IID-NORD contains a total of 128000 synthetic indoor
scenes, and provides the ground truth surface normals. In order to validate the algorithms, we
use a subset of IID-NORD.

NYU Depth Dataset V2

The NYU Depth Dataset V2 is one of the well-known benchmarks for geometric computer
vision problems [23]. This dataset contains 1449 RGB-D images obtained from 464 various
real indoor scenes. The dataset does not provide the ground truths of surface normals. In our
experiments we used the labeled set of this dataset.

8



4.2 Evaluation Metrics
Investigating the performance of the algorithms with a suitable error metric is crucial to report
their efficiency and their shortcomings. It is known that the reported performance of an algo-
rithm may differ with the usage of different evaluation strategies, hence utilizing several error
metrics is beneficial [42]. In this part, we briefly introduce the evaluation strategies that we
use to benchmark our algorithm.

Geodesic Distance

The geodesic distance is defined as the length of the shortest path between the points on the
surfaces along the manifold. The geodesic distance is independent of the observer’s viewing
angle since it is responsive to small topology changes [43, 44]. The lower the geodesic dis-
tance the higher the similarity between the ground truth and the estimated surface normals.
The geodesic distance GDIS between the ground truth ngt and the estimated surface normal
nest is computed as follows;

GDIS =
1

d

d∑
i=1

cos−1
(
⟨ngti · nesti⟩

)
. (8)

Root Mean Square Error

The root mean square error is a commonly used evaluation metric in the field of intrinsic
image decomposition [45]. A lower root mean square error indicates better results. The root
mean square error (RMSE) between ngt and nest can be calculated as follows;

RMSE =

√√√√1

d

d∑
i=1

∣∣ngti − nesti

∣∣2. (9)

5 Discussion
We compare our algorithm with the following geometry-based surface normal estimation
algorithms; baseline, Area-Weighted [5], Angle-Weighted [5], bicubic interpolation [26],
SIRFS [6], and 3F2N [4]. We provide both statistical and visual comparisons on the MIT-
Berkeley Intrinsic Images dataset and IID-NORD dataset, while we provide only visual
evaluations on the New Tsukuba Dataset, SceneNet RGB-D dataset, and NYU Depth Dataset
V2. We prefer this evaluation approach since the former datasets include ground truth surface
normals, while the latter benchmarks do not. Moreover, for the 3F2N method which requires
the camera specifics as input, we have used fixed parameters during the evaluation on the
MIT-Berkeley Intrinsic Images dataset that does not provide the camera specifics. For more
complex scenes the use of fixed camera parameters would affect the outcomes significantly.
That is why we do not consider the 3F2N algorithm for the comparisons on more complex
datasets. Also, we evaluate the SIRFS algorithm only on the MIT-Berkeley Intrinsic Images
dataset since it requires single masked objects as input.

As shown in Table 2, our approach achieves the lowest errors for all metrics on the MIT-
Berkeley Intrinsic Images dataset. This statistical achievement also coincides with the visual
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Table 2: Statistical results on MIT-Berkeley Intrinsic Images dataset. The best
scores are highlighted.

GDIS
Min. Mean Med. B.25% W.25% Max.

Baseline 0.996 0.999 0.999 0.998 1.000 1.000

Angle-Weighted 0.095 0.163 0.155 0.112 0.223 0.262

Area-Weighted 0.095 0.163 0.155 0.111 0.223 0.262

Bicubic Interpolation 0.148 0.256 0.246 0.172 0.359 0.504

SIRFS 0.145 0.256 0.242 0.166 0.366 0.438

3F2N 0.218 0.379 0.377 0.271 0.494 0.563

Proposed without scale-space 0.096 0.163 0.155 0.112 0.223 0.263

Proposed with scale-space 0.091 0.160 0.153 0.108 0.220 0.259

RMSE
Min. Mean Med. B.25% W.25% Max.

Baseline 0.783 0.968 0.953 0.854 1.094 1.270

Angle-Weighted 0.051 0.063 0.062 0.053 0.073 0.083

Area-Weighted 0.046 0.056 0.055 0.048 0.066 0.073

Bicubic Interpolation 0.189 0.342 0.337 0.238 0.447 0.516

SIRFS 0.130 0.246 0.241 0.164 0.324 0.333

3F2N 0.400 0.490 0.500 0.414 0.572 0.626

Proposed without scale-space 0.046 0.056 0.055 0.048 0.066 0.073

Proposed with scale-space 0.037 0.049 0.048 0.039 0.061 0.064

comparisons in Fig. 6. Our method is able to preserve the small details on edges where the
gradient changes sharply. On this dataset, the performance difference between our algorithm,
and its version where we do not employ the scale-space is statistically low, however, the
advantage of the scale-space is clearly observable in the outcomes of more complex datasets
containing larger planar regions.

After evaluating the performance on a dataset containing single objects, we analyze our
method’s effectiveness on a more complex synthetic dataset, namely IID-NORD. We provide
the statistical outcomes in Table 3. For this table it is critical to note that the scores have
to be considered together with the percentage of surface normals that the algorithm is able
to predict, i.e. an algorithm might achieve a better score than others but estimate only half
of the surface normals present in the scene. The missing normals in the estimations can be
explained by the large planar regions where the algorithms are sometimes unable to compute
the surface normals for each pixel of the scene as shown in Fig.7. Our proposed method is able
to compute all the surface normals in the scenes, while achieving the lowest RMSE scores. In
terms of GDIS, we do not present the lowest errors but we are able to estimate all the surface
normals, while the methods achieving lower errors estimate the normals approximately for
half of the pixels present in the image.

After providing statistical analysis on two datasets, we present further results of our
method by providing visual comparisons on datasets containing either real-world scenes or
real-world-like synthetic images. In Fig. 8, we present different scenes from the New Tsukuba
Dataset which contrary to the MIT-Berkeley Intrinsic Images dataset contains real-world-like
scenes having large planar regions that are challenging for most algorithms. For instance,
the Angle-Weighted method fails to estimate the surface normals at planar regions, whereas
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Fig. 6: Visual comparison on the MIT-Berkeley Intrinsic Images dataset. (Left-to-right) The
scene, depth map, estimation of SIRFS, estimation of the proposed method, and the ground
truth normals.

Table 3: Statistical results on the subset of the IID-NORD dataset. While analyzing this
table it is important to consider the scores together with the percentage of filled pixels
(Pix.%).

GDIS

Pix.% Min. Mean Med. B.25% W.25% Max.
Baseline 99.53 0.972 0.994 0.999 0.977 0.999 0.999

Angle-Weighted 47.77 0.145 0.213 0.217 0.163 0.258 0.314

Area-Weighted 47.77 0.145 0.213 0.217 0.163 0.258 0.314

Bicubic Interpolation 100.00 0.529 0.651 0.657 0.545 0.724 0.734

Proposed without scale-space 52.01 0.138 0.289 0.289 0.159 0.399 0.433

Proposed with scale-space 100.00 0.263 0.321 0.315 0.284 0.366 0.403

RMSE

Pix.% Min. Mean Med. B.25% W.25% Max.
Baseline 99.53 1.037 1.082 1.086 1.044 1.117 1.144

Angle-Weighted 47.77 0.195 0.281 0.305 0.221 0.324 0.374

Area-Weighted 47.77 0.195 0.281 0.305 0.221 0.324 0.374

Bicubic Interpolation 100.00 0.389 0.440 0.453 0.401 0.463 0.468

Proposed without scale-space 52.01 0.193 0.291 0.314 0.240 0.326 0.384

Proposed with scale-space 100.00 0.129 0.203 0.216 0.139 0.245 0.277

our algorithm provides accurate surface normals by benefiting from carrying out the com-
putations in scale-space. If we have complex scenes rather than a single masked object, the
nonuse of the scale-space causes discontinuities at edges and surface normals cannot be com-
puted at planar regions. This observation is noteworthy since in the statistical results given in
Table 2, the Area-Weighted, Angle-Weighted, and the proposed approach without scale-space
provide similar scores as our algorithm, while in Fig. 8 we can clearly see the effectiveness
of scale-space computations. In addition to the examples presented in Fig. 8, we provide a
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Fig. 7: Visual results on the IID-NORD dataset. (Left-to-right) Input scene, depth map, results
of the Area-Weighted method, estimations of the proposed algorithm, and the ground truth
surface normals.

Fig. 8: Visual comparison on the New Tsukuba Dataset. (Left-to-right) The scene, depth map,
and estimations of the Angle-Weighted method, the proposed algorithm without scale-space,
and the proposed algorithm. The white regions present the pixels where surface normals could
not be computed.

video sequence containing all the scenes of the New Tsukuba dataset which can be reached
from the following page [46].

We provide our results on the SceneNet RGB-D dataset in Fig. 9. Like the New Tsukuba
dataset, the SceneNet RGB-D dataset includes real-world-like synthetic scenes. On the first
row of Fig. 9, we can see that the surface normals are estimated by the Angle-Weighted
method at regions that appear to be planar in the scene, while the same method failed to
compute the normals in planar areas in the New Tsukuba Dataset. The reason behind the
difference of the outcomes might be the distinct rendering procedures applied during dataset
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Fig. 9: Visual results on the SceneNet RGB-D dataset. (Left-to-right) Input scene, depth map,
results of the Angle-Weighted method, and the proposed algorithm.

Fig. 10: Visual results on the NYU Depth Dataset V2. (Left-to-right) Input scene, depth map,
results of the Area-Weighted method, and the proposed algorithm.

formation. As we can see from the estimated normals of the SceneNet RGB-D dataset, the
depth maps contain small but frequent gradient changes even in areas that appear to be planar,
i.e. back wall on the first row of Fig. 9. While the performance of the Angle-Weighted method
increases on this dataset, it still faces difficulties, i.e. there are surface normals that could not
be computed on the pillow and wall for the image on the third row of Fig. 9. On the other hand,
our approach taking advantage of the scale-space computations provides accurate estimates
without any missing regions.
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In Fig. 10, we provide a visual analysis on the NYU Depth Dataset V2. As aforemen-
tioned this is a real-world dataset containing noisy depth measurements which challenges the
algorithms during surface normal estimation. We observe that the Area-Weighted algorithm
produces sharp edges yet it is severely affected by noise. On the other hand, our algorithm pro-
vides surface normals that do not contain severe ambiguities in planar regions arising due to
noisy measurements, while greatly respecting the transitions between the manifolds. Obtain-
ing entirely sharp estimations is a common challenge in the field of surface normal estimation,
especially when noisy depth measurements are of interest. This challenge is observable even
in the results of learning-based state-of-the-art studies requiring high amount of data and
computationally expensive training phases [8, 14, 15, 47].

Lastly, we provide our investigation on the threshold setting. We have analyzed dis-
tinct threshold values by evaluating their performance on the MIT-Berkeley Intrinsic Images
dataset based on the RMSE and GDIS scores. As given in Fig. 11, the errors do not signifi-
cantly differ between the thresholds of 0.5 and 1.3. However, when we visually investigate the
estimated surface normals based on distinct thresholds, we notice ambiguities in some of the
outcomes. We observe that the lowest RMSE score obtained at the threshold value of 0.9 pro-
vides the best estimations. Therefore, we chose 0.9 as the threshold for the finest scale, while
for each consecutive level, the threshold becomes 4 times larger. It is worth mentioning here
that after making statistical investigations on the IID-NORD dataset, and carrying out visual
analysis on the New Tsukuba Dataset, SceneNet RGB-D dataset, and NYU Depth Dataset
V2, we determined that using approximately a 3 times larger threshold for these datasets
results in better performance. We can explain the selection of a different threshold value for
these datasets by two facts; (i) the measured depth range difference, and (ii) the complexity
of the scenes. For the former we investigated the minimum and maximum depth measure-
ments present in the datasets. While the depth range of the MIT-Berkeley Intrinsic Images
dataset is between −327.87 and 286.77, the depth maps of the IID-NORD dataset are in inte-
ger numbers and their range is between 0 and 255, the New Tsukuba Dataset has a depth
range between 23.63 and 1312.50, the SceneNet RGB-D dataset has a depth range between
0 and 10589, and the depth range of the NYU Depth Dataset V2 is between 713 and 9986.
One could suggest to fit the depth information into a certain common range for all datasets,
however this would distort the data, thus we do not prefer such an approach. For the latter we
analyzed the depth difference between different objects in a scene, and during this analysis
we noticed that the several scenes in the benchmarks (except of the MIT-Berkeley Intrinsic
Images dataset) contain large depth measurement changes between objects which increases
the required threshold. Since the MIT-Berkeley Intrinsic Images dataset contains only single
objects, and the other datasets either provide depth maps in integer numbers or have a higher
range, it is not surprising that for these datasets a larger threshold value is required.

6 Conclusion
Surface normals are local descriptors that enable us to extract features of the scenes. There-
fore, they are utilized in various computer vision and computer graphics applications. Over
the years many traditional and data-dependent algorithms have been proposed to estimate the
surface normals, yet efficient low-cost methods are still needed in this field. We introduce
a simple yet effective surface normal estimation algorithm that operates in scale-space. Our
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Fig. 11: The analysis of the threshold value. The best-performed parameter is selected based
on the average RMSE and GDIS score on the MIT-Berkeley Intrinsic Images dataset.

method estimates the surface normals in the finest scale of the pyramid, then utilizes the esti-
mations in coarser scales to fill the missing regions that could not be computed properly in
the finest scale. By taking advantage of scale-space, our method is able to estimate surface
normals even for scenes that contain large planar regions and noisy depth measurements. We
provide in-depth analysis on 5 different benchmarks including challenging datasets such as
the IID-NORD dataset and the NYU Depth Dataset V2. According to the experiments, our
algorithm can compute the surface normals for both simple and complex scenes efficiently.
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