
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

Multi-Scale Color Constancy based on Salient Varying Local
Spatial Statistics

Oguzhan Ulucan , Diclehan Ulucan and Marc Ebner

Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, Greifswald, 17489,
Germany.

*Corresponding author(s). E-mail(s): oguzhan.ulucan@uni-greifswald.de;
Contributing authors: diclehan.ulucan@uni-greifswald.de; marc.ebner@uni-greifswald.de;

Abstract

The human visual system unconsciously determines the color of the objects by ”discounting” the effects of the
illumination, whereas machine vision systems have difficulty performing this task. Color constancy algorithms
assist computer vision pipelines by removing the effects of the illuminant, which in the end enables these pipelines
to perform better on high-level vision tasks based on the color features of the scene. Due to its benefits, numer-
ous color constancy algorithms have been developed, and existing techniques have been improved. Combining
different strategies and investigating new methods might help us design simple yet effective algorithms. There-
upon, we present a color constancy algorithm based on the outcomes of our previous works. Our algorithm is
built upon the biological findings that the human visual system might be discounting the illuminant based on the
highest luminance patches and space-average color. We find the illuminant estimate based on the idea that if the
world is gray on average, the deviation of the brightest pixels from the achromatic value should be caused by the
illuminant. Our approach utilizes multi-scale operations by only considering the salient pixels. It relies on vary-
ing surface orientations by adopting a block-based approach. We show that our strategy outperforms learning-free
algorithms and provides competitive results compared to the learning-based methods. Moreover, we demonstrate
that using parts of our strategy can significantly improve the performance of several learning-free methods. We
also briefly present an approach to transform our global color constancy method into a multi-illuminant color
constancy approach.

Keywords: Computational color constancy, illumination estimation, white-balancing, scale-space

1 Introduction

If the human visual system had not evolved to dis-
count the effects of illumination, color which is one
of the most significant features we use to give mean-
ing to our surroundings, would lose its importance.
Semir Zeki, a well-known neuroscientist, emphasized
the importance of identifying colors irrespective of
the type of illuminant present in the scene by stat-
ing that without this ability, objects could no longer
be reliably identified by their color [1]. The ability

to perceive colors as constant regardless of the type
of illuminant is called color constancy, and it is per-
formed unconsciously by the human visual system [2].
Even though many studies have been conducted to
understand this phenomenon, it is still unknown how
the brain arrives at the color constant descriptors of
the scene [3]. Investigating how we perform color
constancy might be the key to unraveling how visual
color processing works in the visual cortex, and the
outcomes can help us to design more robust artifi-
cial systems [3, 4]. Therefore, color constancy is an
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important field not only for neuroscientists to under-
stand how the human visual system works but also for
computer scientists to mimic our capabilities to create
algorithms that perform better in scene understanding.

We can explain computational color constancy by
making use of the following image formation model.
An image captured by a device is an integrated signal
of three key components which can be formulated as
follows [3];

Ii(x, y) =

Z
R(x, y,�) · L(x, y,�) · Si(�)d� (1)

where, Ii presents a pixel measured at spatial loca-
tion (x, y), R denotes the reflectance of objects, L is
the wavelength distribution of the illumination, Si is
the capturing device’s sensor function with i 2 {red,
green, blue}, and � is the wavelength of the visible
spectrum.

Without the knowledge of the measuring device
and the type of light source illuminating the scene,
it is very challenging for machine vision systems to
identify the true colors of the objects. Therefore, in
the field of computational color constancy, researchers
aim at developing algorithms that discount the illu-
mination conditions to assist various computer vision
tasks. Since color constancy is an ill-posed problem,
frequently, the assumption is made that the sensors’
responses are narrow-band and the illumination is
uniform throughout the entire scene. It is worth men-
tioning that while the relaxation of the problem helps
us to estimate the illuminant of the scene, most scenes
are not illuminated by uniform light sources [5, 6].

The formation of the measured data I can then be
simplified as follows [3];

I(x, y) = R(x, y) · L. (2)

With this simplification, researchers widely accept
that after estimating L, a white-balanced image Iwb

can be obtained from color cast image I by using a
3⇥ 3 diagonal matrix as follows [7, 8];

Iwb =

2

4
Lestg/Lestr 0 0

0 1 0
0 0 Lestg/Lestb

3

5 · I (3)

where, Lest = [Lestr , Lestg , Lestb ] is the estimated
color vector of the illuminant, and r, g and b represent
the red, green, and blue color channels, respectively.

In the field of computational color constancy,
numerous methods have been developed. Two algo-
rithms, i.e. the max-RGB and gray world algorithm,
inspired by the human visual system have been pro-
posed some time ago, yet they are still used as building
blocks of different methods [3, 9]. In one of our
previous studies, we also used the assumptions of
the max-RGB and gray world algorithm to design a
color constancy algorithm. In our method, we further
assumed that if the scene is achromatic on average,
the shift of the highest luminance pixels away from
an achromatic value should be the result of external
factors, and this shift should be in the direction of
the global illumination source [10]. We observed that
our learning-free method provides satisfying results in
estimating the illuminant even when lights beyond the
standard illuminants are present in the scene, while
learning-based methods face a challenge in discount-
ing these lights since they are seldomly included in
existing benchmarks. On the other hand, we realized
that there are some pixels that reduce the performance
of our algorithm, which also coincides with the obser-
vations reported in several studies [11–15]. In order
to minimize the negative impact of these pixels, we
adjusted our method so that only the blocks contain-
ing salient image elements, i.e. whitest pixels, are
used [16]. In the same study, we showed that block-
based computations and salient pixels increase the
performance of the max-RGB and gray world algo-
rithms. By taking inspiration from our previous inves-
tigations, recently, we further modified our method
with a scale-space approach and demonstrated that
like block-based operations, multi-scale computations
can also improve the effectiveness of several color
constancy algorithms [17].

In this paper, we extend our previous works by
adding new discussions and experiments on new
datasets, while also modifying our algorithm for
mixed illumination conditions with a simple yet effec-
tive approach. First of all, we investigate the con-
tribution of the stages of our method to the illu-
mination estimation accuracy and analyze how the
best-performing stages of our method contribute to the
efficiencies of the learning-free color constancy algo-
rithms. With this investigation, we not only introduce
a color constancy algorithm but also provide a com-
prehensive analysis on how scale-space computations
as well as block-based operations by only consider-
ing the salient pixels, and their combination affect
the performance of existing methods. As a result, we
demonstrate a simple yet effective approach to modify
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the algorithms so that their accuracy in estimating the
illuminant improves significantly. Moreover, we pro-
pose an approach to transform our global color con-
stancy method into an algorithm that can achieve color
constancy for mixed illumination conditions without
utilizing any prior information about the scene.

Overall, we can summarize our contributions as
follows:

• We propose a multi-scale block-based color con-
stancy algorithm that takes advantage of scale-space
and the varying local spatial statistics, while only
considering the informative image elements to esti-
mate the illuminant.

• We demonstrate that the efficiency of several
learning-free color constancy algorithms can be
improved by using different parts of our algorithm.

• We show that with a simple modification, the pro-
posed technique designed for global color con-
stancy can be converted into an algorithm for mixed
illumination conditions which does not require any
information about the scene, i.e. the number of the
light sources.

This paper is organized as follows. We provide
a brief literature review in Section 2. We detail the
proposed method in Section 3. We present our exper-
imental setup in Section 4, and we discuss our results
in Section 5. Lastly, we give a brief summary of the
study in Section 6.

2 Related Work

Numerous algorithms have been proposed to over-
come the ill-posed nature of color constancy. In this
section, we provide a brief review of global and multi-
illuminant color constancy algorithms, which we uti-
lize for comparison in our experiments. We simply
group these methods into two categories as traditional
algorithms and learning-based algorithms. While the
former estimates the illuminant purely from image
statistics, the latter extracts features from large-scale
datasets to discount the effects of the illuminant. We
would like to note that providing a full literature sur-
vey is outside of our scope, but research dedicated to
this aim can be found in the following studies [3, 18,
19].

2.1 Traditional Algorithms

There are two well-known traditional color constancy
methods, i.e. the gray world and the max-RGB. The

gray world assumption was formalized by Buchs-
baum in 1980. The gray world method depends on
the assumption that on average the world is gray [20].
To estimate the color vector of the light source, the
gray world method takes the mean of each color
channel individually and outputs a vector formed by
these average values as its illuminant estimate. The
max-RGB method is based on the Retinex algorithm
proposed by Land in 1971 [21]. To find an illuminant
estimate, the max-RGB algorithm finds the maximum
response of each color channel separately to form
the color vector of the illuminant. These two meth-
ods establish the foundations of many color constancy
approaches due to their simplicity and effectiveness.
For instance, the shades of gray algorithm supposes
that the mean of pixels raised to a certain power
is gray [22]. The gray edge method and weighted
gray edge algorithm assume that the mean of the
high-frequency components of the image is achro-
matic [23–25]. The bright pixels method stresses the
importance of the bright image elements [11]. The
mean-shifted gray pixels method detects the gray pix-
els and uses them to find the illuminant [13]. The gray
pixels color constancy algorithm detects the gray pix-
els in a scene by using a grayness measure and utilizes
them to estimate the illuminant [14].

There are also other traditional methods that
depend on different approaches. For instance, the
local surface reflectance statistics approach considers
the feedback modulation mechanism in the eye and
the linear image formation model [26]. The princi-
pal component analysis based color constancy method
uses only certain pixels, which have the largest gra-
dient in the data matrix [12]. The double-opponency-
based color constancy method is based on the physio-
logical findings on color processing [27]. The biolog-
ically inspired color constancy method is based on the
hierarchical structure of the human visual system and
mimics our sensation on color illusions [9].

Alongside the algorithms assuming the illuminant
is uniform throughout the scene, there are also several
methods trying to solve the problem of color con-
stancy for spatially varying illumination conditions.
One early algorithm called local space average color
is introduced by Ebner [28], who computationally
modeled the biological finding that the human visual
system might be discounting the illuminant based on
local space average color. Gijsenij et al. introduced a
block-based method that can be applied to global color
constancy algorithms in a local manner [6]. The con-
ditional random fields based method modifies existing
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global color constancy methods to apply them for
mixed illuminant conditions [29]. The retinal inspired
color constancy model investigates the color process-
ing mechanisms in a certain level of the retina [30].
The color constancy weighting factors method divides
the image into regions and checks if a region con-
tains sufficient information for color constancy by
utilizing the normalized average absolute difference
of each area as a measure of confidence [31]. The
color constancy for image of non-uniformly lit scenes
divides the image into regions and estimates the illu-
minant by using the regions containing sufficient color
variation [32]. The color constancy adjustment based
on texture of image method takes advantage of tex-
tures to detect image elements that have sufficient
color variation and utilizes these to find the illu-
minant estimate [33]. The visual mechanism based
color constancy with the bottom-up method mimics
the bottom-up mechanisms of the human visual sys-
tem [34]. The N-white balancing algorithm finds the
number of white points in the image to discount the
illuminant of the scene [35].

2.2 Learning-based Algorithms

The convolutional color constancy study is one of
the earliest color constancy methods based on convo-
lutional neural networks (CNNs) [36]. In this study,
Barron transformed the operation of illumination esti-
mation to an object detection application by formu-
lating color constancy as a 2D spatial localization
task. The deep specialized network for illuminant
estimation is based on a convolutional network archi-
tecture and it is sensitive to diverse local regions
of the scene [37]. The fast Fourier color constancy
method carries out computations in the frequency
domain and transforms the light source estimation task
into a spatial localization operation on a torus [38].
The quasi-unsupervised color constancy algorithm
relies on the detection of gray pixels without using
a huge amount of labeled data during its training
phase [39]. The color constancy convolutional autoen-
coder method utilizes convolutional autoencoders and
unsupervised pre-training to estimate the illuminant
of the scenes [40]. The sensor-independent color con-
stancy model maps the input to a sensor-independent
space by using an image-specific matrix [41]. The
bag of color features color constancy method utilizes
convolutional neural networks and it is based on bag-
of-features pooling [42]. The cross-camera convolu-
tional color constancy algorithm is trained on images

captured with several different cameras, and during
inference, additional unlabeled images are given as
input so that the model can calibrate itself to the
spectral properties of the testing set [43]. The com-
bining color constancy algorithms model efficiently
merges color constancy algorithms from the motiva-
tion that not all algorithms perform well on all scenes
since the performance of algorithms is sensitive to
the content of the input scene [44]. The one-net: con-
volutional color constancy simplified model does not
utilize pre-trained layers and large kernels to show
that complex models are not necessary to achieve high
performance [45]. Alongside single illuminant cases,
learning-based models are also being used in mixed-
illumination conditions. Bianco et al. introduced a
CNN-based color constancy method which has a
detector that finds the number of light sources in the
scene [46]. The physics-driven and generative adver-
sarial networks (GAN) based color constancy method
transforms the illumination estimation task into an
image-to-image domain translation problem [47].

Apart from algorithms aiming at estimating the
illuminant to perform color constancy, there also exist
models that correct improperly white-balanced images
without explicitly estimating the color vector of the
light source. For instance, the KNN white-balance
method computes a nonlinear color mapping func-
tion for correcting the colors of the image [48]. The
extension of the KNN white-balance method is the
interactive white-balance which relates the nonlinear
color mapping functions directly to the colors cho-
sen by the users to allow interactive white-balance
adjustment [49]. The deep white-balance algorithm
realistically edits the white-balance of an sRGB image
by mapping the input to two white-balance settings
by using a deep neural network [50]. The auto-white
balance for mixed scenes renders the input scene
with a small number of predefined white-balance set-
tings through which it forms weight maps that are
used to fuse the rendered scenes for generating a
white-balanced output [51]. The style white-balance
improves the contemporary auto-white balance mod-
els for single and mixed-illuminant inputs by model-
ing the illumination as style factor [52].

While the learning-based algorithms usually out-
perform the traditional methods on well-known
benchmarks, their performance may decrease when
they face images captured with unknown hardware
specifications and/or the test samples contain light-
ing conditions different from their training set. These
observations have been reported in several studies,
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Fig. 1 The flowchart of our proposed illumination estimation algorithm. We use the luma image to obtain the salient pixels and their weights
to form our informative image. Subsequently, we estimate the illuminant by carrying out computations in scale-space. We compute the scaling
vectors C to find the deviation of the brightest pixels from the gray value. Then, we take the mean of the scaling vectors at each level to find an
illuminant estimate Ls for the corresponding scale s. Lastly, we average all the illuminant estimates to find the color vector of the global light
source Lest illuminating the scene.

where researchers shared their concerns about the
problems in learning-based methods [14, 53–55].
Also, in our recent study, we have explicitly shown the
performance decrease of learning-based algorithms,
when they process images containing unique illu-
mination conditions that are seldomly considered in
available benchmarks [10]. We can briefly summarize
the reasons behind the performance drop as follows.
Most public benchmarks are formed with similar hard-
ware, out-of-ordinary lights are usually not considered
during dataset creation, and learning-based algorithms
suppose that their train and test sets are similar in one
way or another [10, 54].

3 Proposed Method

In this section, we detail our method (Fig. 1). We build
our algorithm upon two assumptions, which have a
correspondence in the human visual system. Since the
human visual system might be discounting the illu-
minant of the scene based on space-average color
and highest luminance patches [5, 20, 21, 56–60], we
assume that on average, the world is gray, and there
are several bright pixels somewhere in the scene. We
form our main idea around these assumptions and
assume that the deviation of the brightest pixels from
the achromatic value should be caused by the light
source (Fig. 2). We note that both the bright pixels
and the achromatic value might change throughout the
scene due to the varying local surface orientations.
Therefore, in our method, we rely on a block-based
approach to ensure that our algorithm is sensitive to
local spatial information, which is usually neglected
in other studies operating at the image level. More-
over, as stated in many color constancy studies, not all

C1

C2

C3

C4

b

r g

b

r g

b

r g

b

r g

Fig. 2 The proposed method is based on two assumptions: (i) the
world is gray on average and (ii) there are several bright pixels
somewhere in the scene. Our aim is to find the color vector of the
light source by finding the deviation of the brightest pixels Pmax

from the gray value Pµ by using the scaling vectors C. Since the
local surface orientations vary throughout the image, we calculate
the scaling vectors for each non-overlapping block. Finally, we esti-
mate the color of the global light source by taking the mean of all
scaling vectors.

image elements are informative for estimating the illu-
minant. Therefore, we utilize only the image elements
that we extract from the brightest pixels in the scene
since pixels having the highest luminance might be
useful for human color constancy [57–60]. Moreover,
we adaptively weigh these salient pixels since their
contribution to the task of color constancy could vary
throughout the scene, i.e. they may not have an equal
contribution to the illumination estimation task due to
changing local statistics of the scene. Furthermore, we
carry out our computations in multiple scales since
the importance of utilizing the scale-space, especially
for the tasks taking advantage of the color feature is
demonstrated in many studies due to its sensitivity to
the low-level features of images [61–65].

In our method, first of all, we apply a gamma
correction in case an sRGB image is provided as
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input. We carry out this operation to obtain the lin-
ear relationship between the pixels. Moreover, we do
not consider the under- and over-saturated pixels, i.e.,
approximately the top 5% and the bottom 2% of image
elements, in our calculations to reduce possible noise.
Then, we focus on the extraction of the most infor-
mative pixels, i.e. salient regions, in the scene. In
several studies, it is pointed out that not all pixels
in an image are useful for the task of color con-
stancy [9, 11, 12, 14, 15]. For instance, dominant sky
regions have a tendency to bias the estimates of the
light source, hence they should be handled separately.
In order to find the regions containing only the infor-
mative pixels, we make use of the brightest pixels in
the scene since it is known that the human visual sys-
tem might be discounting the illuminant based on the
highest luminance in the scene [57, 58]. To determine
the salient pixels, we benefit from the black-white
opponent channel OBW of the opponent color space.
We compute OBW as follows [3];

OBW =
r + g + bp

3
(4)

Subsequently, we form a binary saliency map S , by
selecting the informative pixels that correspond to the
top 3.8% brightest pixels in the black-white opponent
channel OBW . The selection of the brightest pixels is
described in detail in Subsection 5.1.

For a scene, all the pixels highlighted by the
saliency map may not have equal brightness. Thus,
using the binary saliency map directly may not be
effective while estimating the illuminant. Thereupon,
we adaptively weight the pixels in the saliency map
by forming a map W from the black-white opponent
channel OBW by fitting the pixels into a Gaussian
function (Eqn. 5). This weight map allows us to
weaken the contribution of the darker image elements
while giving more attention to the pixels having the
highest luminance.

W(x, y) = 1� 1

2⇡�2 ·exp
✓
� (OBW (x, y)� µ)2

2�2

◆
(5)

where, � and µ represent the standard deviation and
the mean of OBW , respectively.

Subsequently, by using the saliency and weight
maps, we create an informative image I, where the
salient regions are adaptively weighted as follows;

I = I(x, y) · W(x, y) · S(x, y). (6)

Fig. 3 The observers viewed only the center of the colored patches
of the Mondrian through an adjustable aperture. Even though the
colors of the patches are yellow and green, the observers perceived
them as grayish-white. When the Mondrian is viewed as a whole,
the observers identify the actual reflectance of the patches.

Afterwards, we carry out our computations in
scale-space, where we can highlight the low-level
features of images. We obtain representations of
the images at different levels, while we determine
the number of scales L adaptively based on the
image resolution, and it can be calculated as L =
blog(min(h,w))/log(2)c, where, h and w are the
width and height of the image. Then, to respect the
local surface orientations, we divide the image into
non-overlapping blocks which consist of m number
of pixels (Fig.1). The parameter m depends on the
image resolution at the scale of interest and it is
calculated as m =

p
(h · w)/⌘, where, ⌘ is the con-

trolling parameter of m which is taken as 120 based
on practical experiments (the process of determining
this parameter is provided in Section 5.1).

It is worth mentioning that we divide the image
into non-overlapping blocks only at levels higher than
half of the number of possible scales that can be
obtained in the pyramid. The reason behind this is
that at coarser scales the blocks would contain a small
number of pixels which would violate one of our algo-
rithm’s assumptions, i.e. the world is achromatic on
average, since the gray world assumption requires a
sufficient number of distinct colors to be present in
the scene [3]. This requirement also coincides with
the mechanisms of the human visual system which are
explicitly demonstrated in Land’s study [56]. In the
experiments, Land showed that two color patches with
different colors, i.e. yellow and green, taken from a
Mondrian image are perceived as grayish-white only
when their centers are viewed through viewing tubes
in void mode, i.e. patches are viewed so that they are
isolated from their local neighbors (Fig. 3) [3].

After we divide the images in scale-space into
blocks, we determine the descriptors to estimate the
color vector of the light source in every block. Note
that for simplicity, we refer to each image in coarser
scales that is not divided into blocks as a block. As

6
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we mentioned before, our algorithm builds upon the
assumptions of the gray world method and the max-
RGB. For each block P we assume that there is a
unique achromatic value, which is our first descriptor
that is used to find the illuminant estimate. We com-
pute this gray value Pµ by taking the average over all
channels within the block of interest instead of taking
the mean of all pixels in the image directly. We cal-
culate a particular gray value for each block to take
the varying local spatial statistics into account. For
the same reason, we determine our second descrip-
tor by taking the maximum response of each block
channel individually and represent them by Pmax =
[Pr,max, Pg,max, Pb,max].

We calculate the color vector of the light source
of each block in every scale by using both of our
assumptions. Based on our main idea we compute how
much the brightest values Pmax deviate from the gray
value Pµ. We assume that if the world is achromatic
on average, then the summation of the intensity val-
ues of Pmax should equal Pµ. However, if there is a
shift away from the achromatic value this deviation
should be in the direction of the color vector of the
light source. We can find this deviation by using a
vector CP = [cr, cg, cb], where each element of CP

scales the intensities of Pmax such that they sum to
Pµ as follows;

Pr,max · cr + Pg,max · cg + Pb,max · cb = Pµ. (7)

We convert Eqn. 7 into an optimization problem to
find CP as follows;

CP = argmin
CP

kPmax CP � Pµk2

with 8c 2 CP : c > 0. (8)

Note that we do not only minimize the norm of this
optimization problem but also the Euclidean norm of
CP . In other words, if we have multiple solutions for
this problem, we take the solution that minimizes the
norm of CP .

After we obtain the CP values for each block,
we calculate the illuminant estimate for each scale by
averaging the CP as follows;

Ls =
1

n

nX

k=1

CPk (9)

where, Ls is the color vector of the light source at a
certain scale s, and n is the number of blocks. In case

we obtain CP in coarser scales where we do not divide
the image into blocks, we directly take the deviation
obtained from Eqn. 8 as our illuminant estimate for
that scale.

Since we assume that the scenes are uniformly
illuminated, we linearly combine the estimations from
each level to obtain a single illuminant estimate Lest

for the given image as follows;

Lest =
1

L

LX

k=1

Lsk (10)

where, Lest is then converted into a unit vector.
Lastly, we can discount the illuminant to obtain a

white-balanced image Iwb by using Eqn. 3.

3.1 Application to Multi-illuminant Color

Constancy

A common drawback in several multi-illuminant color
constancy methods is the requirement of prior infor-
mation related to the number of clusters or segments,
which depends on the number of illuminants present
in the scene [66]. We argue that as we cannot know
the type of light source and/or type of the capturing
device, we can also not be sure about the number of
lights illuminating the scene. Therefore, algorithms
that utilize the number of illuminants as prior infor-
mation will face a significant challenge in discounting
the illuminant when this parameter is not provided
correctly. Consequently, we cannot obtain a robust
algorithm that achieves color constancy for mixed-
illumination conditions effectively if we cannot design
an algorithm free of prior information.

As aforementioned, we develop our method for the
cases where we have a uniformly illuminated scene.
However, we can modify our method with a simple
yet effective approach so that it can provide pixel-wise
estimates of the illuminant for the scenes illuminated
by varying illumination conditions. In this subsection,
we explain our modification that can transform our
global color constancy method into a multi-illuminant
color constancy approach, which does not require any
prior information about the scene.

Our first adjustment is for our informative image
formation stage (Fig. 1). For scenes illuminated by
multiple light sources, we use all pixels that are close
to white, i.e. pixels having the highest luminance,
instead of using the top brightest image elements. We
need this modification since in multi-illuminant color
constancy, we need to take more spatial information

7
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into account. If we utilize only a small number of pix-
els, we cannot provide accurate pixel-wise illuminant
estimates since we would lose the local relationship
between the neighboring pixels, which is an impor-
tant cue for mixed illumination conditions [9, 61]. As
a result, we are using all the pixels, which are clos-
est to white. We can explain the idea of using the
whitest pixels from two different perspectives, (i) dig-
ital photography, and (ii) human color constancy. In
digital photography, we know that we can easily deter-
mine the color vector of the illumination by using the
white pixels in the image instead of utilizing the col-
ored ones [9]. For instance, let us assume that we
capture the picture of a room illuminated with yellow
light. The room has white walls and contains differ-
ent objects having distinct colors. We can determine
the color vector of the light source easier from the
white walls rather than the objects since the captur-
ing device will measure the light reflected from the
white walls as yellow. Furthermore, from the findings
on human color constancy, we know that the areas
having the highest luminance might be used by the
human visual system to discount the effects of the light
source [3, 9, 57, 59, 60].

We determine the image elements closest to white
by using a simple yet effective approach [9]. In order
to find such image elements, we form a temporary
color vector of the light source by taking the mean
of each color channel individually, in other words, we
apply the gray-world algorithm since we are assum-
ing that world is gray on average. Then, we obtain a
temporary white-balanced image Itemp by scaling the
input image according to this temporary color vector
of the light source by Eqn. 3. Afterwards, we create a
pixel-wise whiteness map W by calculating the pixel-
wise distance between the white vector w = [1 1 1]
and the Itemp as follows;

W(x, y) = cos
�1

⇣
w·Itemp

kwk·kItempk

⌘
. (11)

Since the contribution of all spatial locations dif-
fer, we obtain a certainty map C, by fitting W into a
Gaussian function as follows;

C(x, y) = 1

2⇡�2
W

·exp
✓
� (W(x, y)� µW)2

2�2
W

◆
(12)

where, µW and �W are the mean and the standard
deviation of W , respectively.

By using C, we form our informative image
(Eqn. 13) which we use for our multi-scale block-
based computations.

I = I(x, y) · C(x, y) (13)

After obtaining our informative image, we fol-
low similar operations to our global color constancy
approach, i.e. we carry out block-based operations
in scale-space. However, contrary to the single-
illuminant case, for the multi-illuminant scenario, we
do not consider the coarser scales of the pyramid
where the locality starts to degrade since locality
is an important cue for multi-illuminant color con-
stancy [67]. We use half of the number of possible
scales that can be reached in a pyramid since we
observed in our experiments that the performance gen-
erally starts to degrade afterwards. Moreover, we do
not take the mean of the computed deviation CP ,
but we place CP into the center of the correspond-
ing block to obtain a sparsely populated image ICP ,
i.e. an image only containing the estimated deviations
in the center of each block. Then, in order to fill the
missing pixels in ICP , i.e. to obtain a dense image
for a specific scale, where for every spatial location a
pixel-wise estimate Ls(x, y) is present, we carry out
an interpolation between the neighboring center pixels
by convolving ICP with a Gaussian kernel (Eqn. 14).
We follow this approach to obtain smooth transi-
tions between adjacent blocks instead of assuming
that all the pixels in a block have the same deviation,
which would result in sharp changes between adjacent
blocks.

Ls(x, y) = ICP ⇤ 1

2⇡�2
· exp

✓
�x

2 + y
2

2�2

◆
(14)

where, ⇤ denotes the convolution operation. It is
important to note that the scaling factor �, i.e. con-
trolling parameter of the Gaussian kernel, should be
large enough to ensure that at least two neighboring
deviations are inside of the kernel. This parameter is
practically determined and it is calculated as � =
0.1�, where � = (min(h,w)/2).

After obtaining Ls for each scale, in order to find
our pixel-wise estimates Lest(x, y), we process every
Ls as follows. We first upsample the coarsest scale
so that it matches the size of the consecutive finer
level. Then, we linearly combine the upsampled image
with the one on the finer scale. Afterwards, we upsam-
ple the resulting image to linearly combine it with its
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Fig. 4 (Left-to-right) The RECommended ColorChecker, the INTEL-TAU, the NUS-8, the MIMO, and the Mixed-Illuminant Test Set datasets,
respectively.

consecutive finer level. We carry out this operation
until the finest scale is reached. The resulting image
represents our pixel-wise illumination estimate Lest.

4 Experimental Setup

In this section, we demonstrate our experimental
setup. In the following Subsection 4.1, we introduce
the datasets that we utilize to compare our algorithm’s
performance with the studies briefly explained in
Section 2, and the initial and previous versions of our
method, i.e. block-based color constancy, and block-
based color constancy with salient pixels, respec-
tively [10, 16]. In Subsection 4.2, we explain the error
metrics that we used to report the statistical results.
We would like to note that we performed the exper-
iments on an Intel i7 CPU @ 2.7 GHz Quad-Core
16GB RAM machine using MATLAB R2021a.

4.1 Datasets

In order to investigate the contribution of the stages
of the proposed algorithm to the performance, and
benchmark our method and the modified algo-
rithms, we carry out comprehensive evaluations on 3
well-known global color constancy datasets namely,
the RECommended ColorChecker [68], INTEL-
TAU [69], and NUS-8 [12] datasets. While in our
previous works’, we used the RECommended Col-
orChecker and INTEL-TAU datasets, in this study we
extend our discussion by also utilizing the well-known
NUS-8 dataset. Moreover, to provide an analysis on
multi-illuminant cases, we utilize 2 benchmarks, the
Multiple Illuminant and Multiple Object (MIMO)
Dataset [29], and the Mixed-Illuminant Test Set which
is recently created by Afifi et al. [51] (Fig. 4). In
order to use these datasets, we mask out the calibration
objects, i.e. color checker, and if necessary we sub-
tract the black level from the original images. Also,
we clip the under- and over-saturated pixels to prevent
the contribution of the noisy pixels since it is known
that these image elements negatively affect the perfor-
mance of color constancy methods. In the following,
we briefly introduce these benchmarks.

The RECommended ColorChecker Dataset

The RECommended ColorChecker dataset is the
updated version of the Gehler-Shi dataset [70]. In
this modified version, the researchers provide accu-
rate ground truths for each scene to solve the prob-
lems in the Gehler-Shi dataset. The dataset contains
568 scenes, captured under single dominant illumina-
tion. The scenes contain 254 indoor, 85 outdoor, and
229 close-up images, which are taken by two differ-
ent capturing devices namely, Canon 1D and Canon
5D [54].

The INTEL-TAU Dataset

The INTEL-TAU dataset is one of the largest color
constancy benchmarks containing 7022 images. The
1466 indoor, 2327 outdoor and 3229 close-up scenes
are captured with different devices namely, Nikon
D810, Canon 5DSR, and Sony IMX135 [54]. The
images are captured under one light source. All the
images in INTEL-TAU are already processed, i.e.
images have a linear response and their black level is
calibrated. Moreover, contrary to other datasets, all the
sensitive data in the INTEL-TAU dataset is handled,
i.e. the faces and license plates are masked out. To uti-
lize this dataset, we used the images belonging to the
sets of ”field1” and ”field3” since the calibration object
is unmasked in other sets, i.e. ”lab printouts”, and ”lab
realscene”, and their masks are not provided.

The NUS-8 Dataset

The NUS-8 dataset is another publicly available global
color constancy benchmark, which contains a total of
1736 raw images. The images containing 415 indoor,
279 outdoor and 1159 close-up scenes are captured
with 8 different cameras namely, Canon EOS-1Ds
Mark III, Canon EOS 600D, Fujifilm X-M1, Nikon
D5200, Olympus E-PL6, Panasonic Lumix DMC-
GX1, Samsung NX2000, and Sony SLT-A57 [54].
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The MIMO Dataset

The MIMO dataset is one of the well-known bench-
marks in the field of color constancy for mixed illumi-
nation conditions. We evaluate our illumination esti-
mation strategy on this dataset since many algorithms
have already been tested on this benchmark [54]. The
MIMO dataset contains a total of 78 linear images for
two different sets; (i) the real-world scenes contain-
ing 20 complex scenes, and (ii) 58 laboratory scenes
consisting of simple scenes.

The Mixed-Illuminant Test Set

The Mixed-Illuminant Test Set is a publicly available
benchmark. This recently created dataset is rendered
by computer graphics, hence, the ground truths are
not biased by camera sensor specifications. The syn-
thetic dataset contains a total of 150 images with 30
varying scenes. Each scene is rendered with 5 differ-
ent mixed illumination conditions at different color
temperatures, and for each scene, the ground truth
white-balanced image is provided.

4.2 Error Metric

To present statistical results, we adopt the well-known
error metric, the angular error, between the color vec-
tor of the estimated illuminant Lest and the ground
truth Lgt. The angular error between two vectors can
be calculated as follows;

"(Lest,Lgt) = cos
�1

⇣
Lest·Lgt

kLestk·kLgtk

⌘
. (15)

While we report the mean, the median, the mean
of the best 25%, and the mean of the worst 25% of the
angular error for uniform illuminant cases, we analyze
the mean and the median pixel-wise angular error for
the mixed-illuminant cases.

5 Experimental Discussion

In this section, we provide a detailed experimental
discussion while presenting both statistical and visual
analyses on all datasets. Firstly, in Subsection 5.1, we
demonstrate the parameter selection process that we
followed during our algorithm design. Then, in Sub-
section 5.2, we investigate the contributions of the
stages of our algorithm to the performance in detail.
After analyzing the stages of our method, in Subsec-
tion 5.3, we discuss our outcomes on single-illuminant
color constancy by adopting 3 datasets, while we also

investigate the effects of modifying existing color con-
stancy algorithms by using our observations in the
ablation study. Lastly, in Subsection 5.4, we provide
our results for the application to multi-illuminant color
constancy.

As a final note, the detailed ablation study, the
modification of existing algorithms by using the best-
performing stages of our method, and the discussions
on the NUS-8, MIMO, and Mixed-Illuminant Test
Set datasets are all extensions to our previous works’
experimental discussions.

5.1 Discussion on Parameter Selection

As we mentioned in Section 3, our method depends
on two parameters, i.e. the parameter that controls the
size of the non-overlapping blocks, and the percent-
age of the brightest pixels which we utilize to form
our informative image. In order to analyze their effects
on performance, we investigate how the efficiency
of our method changes for global color constancy
with the consideration of their different combinations.
For this analysis, we create a subset containing ran-
dom samples from the global color constancy datasets.
In order to determine the best-performing combina-
tion, we check the parameter combination having the
lowest mean angular error (Table 1).

As aforementioned, our algorithm is built upon
the gray world assumption. Thus a sufficient number
of pixels has to fall into each non-overlapping block
since the gray world assumption is only valid when
there is an adequate number of distinct colors in the
image, i.e. block. In our algorithm, both of the param-
eters (number of brightest pixels and number of pixels
per block) affect the number of pixels that we use to
estimate the illuminant in each block. While the top
brightest pixels are related to the image statistics, the
number of image elements in each non-overlapping
block is dependent on the image size. As shown in
Table 1, the performance of our algorithm increases
when a sufficient number of blocks having an adequate
number of image elements is taken into account. We
can explain this observation with the fact that the pos-
sibility of changing surface orientations increases as
we select a sufficient number of blocks with an ade-
quate number of pixels. Moreover, since the chance
of obtaining uniform colored areas decreases as we
choose blocks with an appropriate size, we can satisfy
the assumptions of the gray world by choosing blocks
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Table 1 Selecting the best parameter combination on a subset
containing random samples.

The top % of brightest pixels

3% 3.2% 3.4% 3.6% 3.8% 4% 4.2% 4.4%

T
h

e
p

a
r
a
m

e
te

r
⌘

40 3.49 3.48 3.47 3.48 3.48 3.49 3.48 3.48
60 3.44 3.43 3.43 3.42 3.42 3.45 3.46 3.46
80 3.43 3.42 3.43 3.44 3.44 3.46 3.45 3.46
100 3.47 3.45 3.45 3.45 3.44 3.46 3.47 3.48
120 3.39 3.37 3.37 3.37 3.36 3.38 3.40 3.42
140 3.43 3.42 3.41 3.42 3.42 3.43 3.43 3.44
160 3.45 3.44 3.43 3.43 3.43 3.44 3.44 3.44
180 3.43 3.41 3.40 3.40 3.40 3.41 3.42 3.43

Table 2 Ablation study on the steps of the proposed method.

Mean Median

Baseline 9.10 8.16

Informative Image 9.04 8.03
Scale-Space 3.77 2.92
Blocks 3.80 3.07

Scale-Space, Informative Image 4.03 3.36
Blocks, Informative Image 3.57 2.76
Blocks, Scale-Space 3.80 2.85

Scale-Space, Blocks, Informative Image 3.16 2.22

with a sufficient number of pixels. Due to similar rea-
sons, the number of the brightest pixels falling into a
block has to satisfy our assumptions.

As seen in Table 1, the best combination is
obtained by choosing the top 3.8% brightest pixels,
and the controlling parameter of the block size as 120.

5.2 Ablation Study

We conduct an ablation study on a single dataset,
which we obtain by combining all benchmarks, to ana-
lyze the contributions of each step of our method to the
performance of color constancy. In Table 2, we pro-
vide the results of our investigation, where baseline
refers to solving only Eqn. 8 without considering the
informative image formation step and without carry-
ing out block-based computations in scale-space. The
outcomes we provide alongside the baseline corre-
spond to solving Eqn. 8 by considering only partic-
ular stages of our proposed approach, such as solv-
ing Eqn. 8 by using only the informative image or
only carrying out the computations in scale-space.
In order to analyze how the steps of the algorithm
affect the performance of our method, we divide our
investigation into three parts. First, we analyze their

contribution alone, then we investigate their dual com-
binations, and lastly, we present the results of our
proposed technique. For each part, we choose the best-
performing strategy alongside the proposed method
which we will use later to modify several learning-
free color constancy algorithms. We observe that each
component of our algorithm contributes to the per-
formance noticeably. We see that solving Eqn. 8 by
utilizing the informative image slightly increases the
performance of our method. However, as presented
in Table 2, using either the blocks or the scale-
space increases the performance substantially. When
we check the angular errors, carrying the compu-
tations into scale-space rather than utilizing blocks
results in a slightly better performance. The reason
behind this can be explained as follows. While we
reduce the image from the finer scale to the consecu-
tive coarser scales, we actually apply a local averaging
between the pixels while reducing the image size,
which acts like a block-based operation, especially
for the coarser scales. Therefore, due to its sensitiv-
ity to low-frequency components of the image, i.e.,
colors, and the partial block-based operations in par-
ticular at the coarser scales, the scale-space approach
performs slightly better than estimating the illuminant
only on the finest scale by using block-based oper-
ations. After investigating the steps utilized in our
algorithm individually, we analyze their dual combi-
nations. We notice that the efficiency of our method
increases significantly when we consider using blocks
and the informative image rather than the scale-space
and the informative image. The reason behind this
performance difference can be explained by the con-
tribution of the varying local statistics. When we use
the block-based approach together with the informa-
tive image, we give more importance to local statistics
than using the informative image with scale-space
since when we divide the image into non-overlapping
blocks, we take more varying local estimations into
account than in the scale-space, i.e., the number of
blocks is higher than the number of scales for an
image, thus, more information is taken into account in
block-based operations combined with the informative
image rather than considering the scale space with the
informative image. Yet, we obtain the best outcomes
when we combine all three steps in our algorithm since
the locality is respected the most when all stages are
considered and only the informative regions are taken
into account.
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5.3 Results of Single-Illuminant Color

Constancy

In order to present the performance of our method
and to analyze the effectiveness of carrying out the
computations of several learning-free color constancy
algorithms by using the highlighted steps in the abla-
tion study, we make a comprehensive comparison
with numerous color constancy algorithms. For each
benchmark, we obtain the results of the methods by
either running their codes without any optimization or
by making use of the reported outcomes of their works
and recent publications, which are considered to be
up-to-date and comprehensive [14, 41, 43]. While dis-
cussing the experimental outcomes, we first focus on
the results of our proposed method. Then, we ana-
lyze the effects of modifying existing color constancy
methods with our approach.

We provide statistical analyses for global color
constancy in Table 3, Table 4, and Table 5. On the
RECommended ColorChecker dataset (Table 3), the
first noticeable outcome is that we obtain the lowest
mean and the mean of the worst 25% of the angu-
lar error among the traditional algorithms, while we
achieve competitive results compared to the learning-
based models. Furthermore, we observe that the exten-
sions we made to the former version of our algorithm
improved the performance of our method in all met-
rics. On the INTEL-TAU dataset (Table 4), again
we obtain the lowest mean angular error among the
learning-free algorithms, while we outperform 4 of
the learning-based methods. On the NUS-8 dataset
(Table 5), we achieve the lowest mean and the mean of
the worst 25% of the angular error among the learning-
free methods. Compared to the proposed algorithm’s
previous version, the improvement in our best and
worst cases leads to a significant decrease in the mean
angular error.

We provide visual comparisons in Fig.5 and Fig.6
by using random samples from the benchmarks. It is
known that in color constancy, scenes containing a
limited number of distinct colors are challenging for
the algorithms. In our visual results, we observe that
even for these scenes our angular error is less than 5
(second and third rows of Fig.5). Also, in Fig.6 where
we provide an analysis by taking random samples
among the worst cases of our previous version, block-
based color constancy with salient pixels, we can
see that our worst cases significantly improved. Yet,
scenes containing uniformly distributed colors and a

Table 3 Statistical results on the RECommended ColorChecker
dataset. The best results are highlighted.

Algorithms Mean Med. B.25% W.25%

L
e
a
r
n

in
g
-b

a
s
e
d

Quasi-U CC [39] 3.46 2.23 - -
COCOA [44] 2.64 1.86 - -
C3AE [40] 2.10 1.90 0.80 4.00
CCC [36] 1.95 1.22 0.35 4.76
SIIE [41] 2.77 1.93 0.55 6.53
FFCC [38] 2.95 2.19 0.57 6.75
C5 [43] 2.50 1.99 0.53 5.46

T
r
a
d

it
io

n
a
l-

b
a
s
e
d

max-RGB [21] 7.78 5.43 1.49 17.47
GW [20] 4.71 3.54 0.93 10.44
SoG [22] 4.09 2.42 0.56 10.28
1st - GE [24] 5.79 3.68 0.93 14.17
2nd - GE [24] 6.09 3.97 1.03 14.70
wGE [25] 6.08 3.33 0.78 15.57
DOCC [27] 7.23 4.26 0.79 18.04
PCA-CC [12] 4.11 2.52 0.53 10.19
LSRS [26] 4.03 3.06 1.39 8.17
MSGP [13] 3.81 2.96 0.76 8.35
GI [14] 3.19 1.90 0.44 8.02
BIO-CC [9] 4.40 3.30 0.86 9.84
BB-CC [10] 3.82 3.16 1.45 7.38
BB-CC w/ SP [16] 3.48 2.71 1.06 7.37

Proposed 3.16 2.16 0.62 7.32

S
c
a
le

-S
p

a
c
e

max-RGB 3.87 2.68 0.80 8.98
GW 3.92 2.74 0.57 9.20
SoG 3.61 2.26 0.47 9.13
1st - GE 3.53 2.22 0.50 8.83
2nd - GE 3.51 2.19 0.54 8.76
wGE 3.86 2.14 0.50 10.35
DOCC 3.60 2.30 0.54 8.85

B
lo

c
k

s
,

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 3.46 2.69 1.02 7.11

GW 3.39 2.46 0.57 7.82
SoG 3.35 2.45 0.69 7.48
1st - GE 3.31 2.34 0.59 7.57
2nd - GE 3.31 2.37 0.61 7.56
wGE 3.30 2.37 0.58 7.55
DOCC 3.30 2.36 0.60 7.54

S
c
a
le

-S
p

a
c
e
,
B

lo
c
k

s

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 3.72 2.59 0.71 8.67

GW 3.76 2.54 0.68 8.86
SoG 3.73 2.56 0.67 8.76
1st - GE 3.87 2.73 0.72 9.05
2nd - GE 3.87 2.73 0.72 9.05
wGE 3.87 2.72 0.71 9.05
DOCC 3.87 2.73 0.73 9.02

limited number of bright pixels are still challenging
(last row of Fig.6).

After we investigate the outcomes of our algo-
rithm, we analyze how our modifications affect the
existing color constancy methods’ performance. As
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Table 4 Statistical results on the INTEL-TAU dataset. The best
results are highlighted.

Algorithms Mean Med. B.25% W.25%

L
e
a
r
n

in
g
-b

a
s
e
d

Quasi-U CC [39] 3.12 2.19 0.60 7.28
One-Net CCC [45] 3.30 3.20 1.10 5.90
C3AE [40] 3.40 2.70 0.90 7.00
BoCF CC [42] 2.90 2.40 0.90 6.10
SIIE [41] 3.42 2.42 0.73 7.80
FFCC [38] 3.42 2.38 0.70 7.96
C5 [43] 2.52 1.70 0.52 5.96

T
r
a
d

it
io

n
a
l-

b
a
s
e
d

max-RGB [21] 10.49 11.14 1.70 19.24
GW [20] 4.90 3.85 0.93 10.59
SoG [22] 5.13 3.72 0.86 11.77
1st - GE [24] 5.89 4.07 0.94 13.79
2nd - GE [24] 6.09 4.25 1.00 14.13
wGE [25] 5.99 3.63 0.80 14.89
DOCC [27] 7.18 4.66 0.80 16.97
PCA-CC [12] 4.46 3.03 0.68 10.64
LSRS [26] 4.16 3.42 0.98 8.60
MSGP [13] 3.57 2.56 0.64 8.23
GI [14] 3.32 2.18 0.56 8.03
BIO-CC [9] 4.14 3.05 0.76 9.42
BB-CC [10] 4.29 3.61 1.19 8.52
BB-CC w/ SP [16] 3.37 2.63 0.79 7.25

Proposed 3.23 2.23 0.59 7.47

S
c
a
le

-S
p

a
c
e

max-RGB 4.47 3.28 0.98 9.95
GW 4.39 3.40 0.78 9.65
SoG 4.30 3.15 0.76 9.80
1st - GE 4.27 3.03 0.75 9.96
2nd - GE 4.10 2.74 0.71 9.75
wGE 4.18 2.24 0.55 11.09
DOCC 4.01 2.91 0.69 9.29

B
lo

c
k

s
,

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 3.94 3.06 0.90 8.48

GW 3.66 2.53 0.64 8.51
SoG 3.66 2.65 0.69 8.33
1st - GE 3.62 2.56 0.65 8.36
2nd - GE 3.63 2.57 0.66 8.33
wGE 3.60 2.53 0.64 8.32
DOCC 3.57 2.51 0.64 8.26

S
c
a
le

-S
p

a
c
e
,
B

lo
c
k

s

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 4.01 2.83 0.71 9.35

GW 4.04 2.82 0.70 9.44
SoG 4.02 2.82 0.69 9.40
1st - GE 4.11 2.90 0.71 9.63
2nd - GE 4.10 2.90 0.71 9.61
wGE 4.11 2.91 0.71 9.63
DOCC 4.10 2.87 0.70 9.59

aforementioned, we modify the learning-free meth-
ods by exchanging Eqn. 8 with their computations
on estimating the illuminant. In particular, we investi-
gate the effects of modifying several color constancy
algorithms through our observations in the ablation
study (Table 2). As aforementioned, we select the

Table 5 Statistical results on the NUS-8 dataset. The best results
are highlighted.

Algorithms Mean Med. B.25% W.25%

L
e
a
r
n

in
g
-b

a
s
e
d

Quasi-U CC [39] 3.00 2.25 - -
One-Net CCC [45] 2.16 1.57 0.54 4.76
CCC [36] 2.38 1.69 0.45 5.85
DSNIE [37] 2.24 1.46 0.48 5.28
SIIE [41] 2.05 1.50 0.52 4.48
FFCC [38] 2.87 2.14 0.71 6.23
C5 [43] 1.77 1.37 0.48 3.75

T
r
a
d

it
io

n
a
l-

b
a
s
e
d

max-RGB [21] 10.34 9.90 1.72 19.82
GW [20] 4.13 3.12 0.86 9.17
SoG [22] 3.51 2.77 0.85 7.57
1st - GE [24] 3.40 2.55 0.84 7.47
2nd - GE [24] 3.66 2.70 0.94 8.05
wGE [25] 3.09 2.23 0.71 7.00
DOCC [27] 3.87 2.42 0.77 9.52
PCA-CC [12] 3.09 2.20 0.65 7.08
LSRS [26] 3.85 2.98 1.26 7.92
MSGP [13] 3.03 2.08 0.62 6.99
GI [14] 3.18 2.22 0.61 7.45
BP [11] 3.17 2.41 0.69 7.02
BB-CC [10] 3.78 3.07 1.32 7.47
BB-CC w/ SP [16] 3.27 2.52 1.06 6.79

Proposed 2.93 2.21 0.74 6.37

S
c
a
le

-S
p

a
c
e

max-RGB 3.35 2.70 1.01 6.81
GW 3.65 2.58 0.74 8.31
SoG 3.35 2.53 0.73 7.38
1st - GE 3.23 2.50 0.75 7.09
2nd - GE 3.01 2.16 0.66 6.80
wGE 2.82 1.95 0.60 6.54
DOCC 3.05 2.29 0.68 6.73

B
lo

c
k

s
,

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 3.58 3.01 1.11 7.03

GW 3.02 2.13 0.65 6.90
SoG 3.02 2.25 0.72 6.62
1st - GE 2.94 2.14 0.65 6.64
2nd - GE 2.95 2.15 0.66 6.63
wGE 2.91 2.10 0.64 6.57
DOCC 2.87 2.08 0.63 6.47

S
c
a
le

-S
p

a
c
e
,
B

lo
c
k

s

I
n

fo
r
m

a
ti

v
e

I
m

a
g
e max-RGB 3.47 2.57 0.71 7.82

GW 3.53 2.58 0.70 8.02
SoG 3.49 2.57 0.69 7.93
1st - GE 3.57 2.61 0.71 8.14
2nd - GE 3.56 2.60 0.71 8.13
wGE 3.57 2.63 0.71 8.13
DOCC 3.56 2.58 0.70 8.11

best-performing steps of our algorithm. It is worth
mentioning that we do not modify traditional algo-
rithms that require information from parts, which
are discarded in our approach. For instance, princi-
pal component analysis based color constancy [12]
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Fig. 5 Visual comparison on random samples. (Left-to-right)
Input image, ground truth, proposed algorithm, and color con-
stancy method (top-to-bottom) max-RGB [21], wGE [25], GI [14],
GW [20], DOCC [27], and PCA-CC [12]. The angular error is pro-
vided on the bottom-right side of the image.

Fig. 6 The visual comparison of the proposed method for ran-
dom samples taken among the worst cases in its previous version
block-based color constancy with salient pixels. (Left-to-right) Input
image, ground truth, proposed method, and former version [16]. The
angular error is provided on the bottom-right side of the image.

needs information from both the brightest and dark-
est regions of the image, thus our strategy, which does
not consider the darkest pixels, is not suitable to mod-
ify this algorithm. Furthermore, we do not apply our
approach to learning-based methods, since they have
a fixed input size requirement, while we use blocks
with varying sizes in our approach, and resizing these

blocks so that they meet the input requirements would
distort the image.

As shown in Table 3, Table 4, and Table 5, the
modified algorithms achieve lower mean angular error
compared to their original versions, while they also
outperform several other color constancy algorithms.
We observe that all three steps of our method, which
are used to modify the algorithms increase the per-
formance significantly, while the highest performance
increase is usually obtained by utilizing the blocks
and the informative image. We can explain this out-
come by two facts; (i) all pixels are not informative
for color constancy, and (ii) taking varying local spa-
tial information into account allows us to highlight
local features that might not be noticed while operat-
ing on global scale. In short, the noteworthy result is
that by making slight modifications, existing simple
yet effective methods can be improved so that they can
compete with the state-of-the-art algorithms or even
outperform them. For instance, the original version of
the max-RGB has a mean angular error of 7.78 on
the RECommended ColorChecker dataset, however,
when we modify this algorithm by using the blocks
and informative image, its mean angular error reduces
to 3.46. Also, when the weighted gray edge method
is applied in scale-space, it outperforms most of the
state-of-the-art algorithms on the NUS-8 Dataset as
shown in Table 5. Moreover, when we modify the
algorithms, the worst cases reduce significantly on all
benchmarks. Since in color constancy it is known that
it is important to improve the algorithms’ performance
for the worst cases, this is a valuable outcome.

5.4 Results of Multi-Illuminant Color

Constancy

For mixed illumination conditions, we provide statis-
tical results on the MIMO dataset, and on the Mixed-
Illuminant Test Set. We report the results of existing
methods by either running their codes or making
use of already published works considered up-to-date
and comprehensive. As aforementioned, the MIMO
dataset contains two sets, i.e. the ”Real-World” set and
the ”Laboratory” set, and the Real-World set includes
images that are closer to the scenes we observe in our
daily lives. Thus, compared to the Laboratory set it
contains more complex scenes, which makes it more
challenging than the Laboratory set [14]. The Mixed-
Illuminant Test Set is a recent dataset and it contains
synthetic images rendered with computer graphics.
This benchmark includes images with different room
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Table 6 Statistical results on the MIMO dataset. The best results
are highlighted.

Real-World Laboratory

Algorithms Mean Med. Mean Med.

S
in

g
le

-I
ll

u
m

in
a
n

t

Do Nothing 8.8 8.9 10.6 10.5
max-RGB [21] 6.8 5.7 7.8 7.6
GW [20] 5.3 4.3 3.5 2.9
SoG [22] 6.2 3.7 4.9 4.6
1st - GE [24] 8.0 4.7 4.3 4.1
wGE [25] 7.9 4.1 4.4 4.0
DOCC [27] 7.9 5.0 4.6 4.4
PCA-CC [12] 7.7 3.5 4.1 3.8
LSRS [26] 4.9 3.8 3.9 3.5
MSGP [13] 5.8 5.0 13.3 12.6
BIO-CC [9] 5.0 4.3 4.2 4.1
C3AE [40] 12.4 12.3 13.9 14.1
SIIE [41] 5.9 5.1 9.0 9.0
C5 [43] 11.9 13.0 7.0 7.1

M
u

lt
i-

I
ll

u
m

in
a
n

t

LSAC [28] 4.9 4.2 2.7 2.5
Gijsenij et al. w/ max-RGB [6] 4.2 3.8 5.1 4.2
Gijsenij et al. w/ GW [6] 4.4 4.3 6.4 5.9
Gijsenij et al. w/ 1st - GE [6] 9.1 9.2 4.8 4.2
CRF w/ max-RGB [29] 4.1 3.3 3.0 2.8
CRF w/ GW [29] 3.7 3.4 3.1 2.8
CRF w/ 1st - GE [29] 4.0 3.4 2.7 2.6
N-WB w/ max-RGB [35] 4.1 3.4 2.6 2.2
N-WB w/ GW [35] 4.6 4.5 3.7 3.1
N-WB w/ SoG [35] 4.2 3.8 2.8 2.3
N-WB w/ 1st - GE [35] 4.7 3.6 2.5 2.2
VM-CC w/ Bottom-Up [34] 5.0 4.0 3.7 3.4
RM-CC [30] 5.2 4.3 3.2 2.7
CCWF [31] 3.8 3.8 1.6 1.5
CCATI [33] 3.8 3.8 2.6 2.6
CCAFIS [32] 4.2 4.3 2.1 2.7
GI (M=4) [14] 3.9 3.4 2.7 2.2
GI (M=6) [14] 3.9 3.4 2.6 2.1
CNNs-based CC [46] 3.3 3.1 2.3 2.2
GAN-based CC [47] 3.5 2.9 - -
Proposed 3.7 2.8 2.8 2.5

layouts that are illuminated under varying mixed illu-
mination conditions. Thus, in our experiments, we
evaluate our approach not only for the real-world
scenes but also for synthetically created ”real-world-
like” challenging images. In this section, first, we
provide statistical results for the MIMO dataset and
we discuss the outcomes. Then, we report our results
for the Mixed-Illuminant Test Set.

According to the statistical analysis on the MIMO
dataset (Table 6), our approach can provide pixel-
wise estimates for mixed illumination conditions and
it surpasses several methods, which are specifically

Table 7 Statistical results on the Mixed-Illuminant Test Set. The
best results are highlighted.

Algorithms Mean Med.

MSGP [13] 19.7 17.2

GI [14] 6.4 5.7

LSAC [28] 4.7 4.5

KNN White-Balance [48] 5.8 5.8

Interactive White-Balance [49] 5.8 5.6

Deep White-Balance [50] 4.5 4.2

Auto White-Balance for Mixed-Scenes [51] 4.7 4.1

Style White-Balance [52] 5.1 4.9

Proposed 4.6 4.4

designed to transform global color constancy algo-
rithms into multi-illuminant cases. Also, while the
statistical results seem competitive on both sets it is
worth pointing out that our algorithm neither requires
any prior information about the scene, i.e. the number
of illuminants or the number of image segments/clus-
ters nor it is trained using the illuminants from the
MIMO dataset such as the GAN-based Color Con-
stancy. We provide our pixel-wise estimations for both
sets in Fig. 7.

Among all traditional algorithms, our method
obtains the best angular error on average on the
Real-World set. Compared to the learning-based tech-
niques, we provide the best median angular error
together with GAN-based CC, while the best mean
angular error is obtained by CNNs-based CC. In the
Laboratory set, we provide competitive results. Our
performance is higher than in the Real-World set,
which arises due to the complexity difference between
these sets.

For the Mixed-Illuminant Test Set (Table 7), the
proposed illumination estimation strategy obtains the
second-best mean and third-best median angular error.
It is important to stress that our approach is a learning-
free method, hence, it is independent of data. The
high-cost training phases are not incurred, which
we see as our main advantage among the state-of-
the-art works, i.e., Auto White-Balance for Mixed-
Scenes [51], Style White-Balance [52].

As a final note, we would like to highlight the
advantages and limitations of our algorithm which
we addressed throughout our paper. Our algorithm
is learning-free, thus we have lower computational
costs since we do not have a training phase. Also,
our method is easy to implement, and we utilize only
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Fig. 7 Results on MIMO dataset. (Left-to-right) Input scenes,
pixel-wise ground truths, and pixel-wise estimation of the proposed
method.

two parameters which is considerably lower com-
pared to learning-based methods. Moreover, as stated
in other color constancy studies not all pixels are
informative, therefore we only consider the salient
regions by utilizing the bright pixels which enable us
to reduce the impact of the non-informative image ele-
ments. Furthermore, we carry out our computations
using non-overlapping blocks that allow us to take
the varying local statistics of the scenes into account
which might not be possible while operating on a
global scale. Therefore, modifying the algorithms by
using the salient regions and blocks improves their
performance on average significantly. Also, we use
scale-space computations which are sensitive to the
low-level features of images, to highlight the color fea-
tures that can be missed while operating only on a
single scale. On the other hand, in the field of color
constancy, it is well-known that the methods utilizing
statistical properties, in particular, traditional algo-
rithms relying on the gray world assumption, have
difficulty in estimating the color vector of the light
source in uniformly colored images, i.e., scenes con-
taining dominant grass and sky regions, since when
there are a limited number of distinct colors, the gray
world algorithm is not valid. To tackle this problem,
most studies, and also our method, try to guide their
approaches by only considering specific regions or
pixels. While highlighting the color features and tak-
ing local statistics only in the salient regions into
account allows us to improve the efficiency of our tra-
ditional algorithm, scenes containing large uniformly
colored areas are more challenging than other images.

6 Conclusion

Color is an important feature not only for humans but
also for various computer vision pipelines to perform
accurate high-level vision tasks, i.e. object recognition
and image dehazing. Due to the importance it holds,
computational color constancy has been an attrac-
tive field of study, and researchers in this domain
have developed many successful color constancy algo-
rithms. Yet, the aim of researchers is not only to
develop new techniques to find the color vector of the
light source but also to improve existing methods by
combining various strategies since this might help us
to design simple yet efficient methods. From this moti-
vation, we develop a computational color constancy
algorithm based on the observation that space-average
color and highest luminance patches carry significant
cues for human color constancy. We estimate the color
vector of the light source by assuming that on aver-
age, the world is achromatic and there are several
bright image elements somewhere in the scene. We
further assume that if the scene is gray on average, the
shift of the brightest pixels from the achromatic value
should be caused by the light source. We carry out our
computations in scale-space where we find the esti-
mations for each non-overlapping block individually
by only considering the salient regions of the scene.
Thereby, we take into account that surface orienta-
tions might vary throughout the scene, and not every
image element is informative for performing color
constancy. According to the experiments, the proposed
algorithm achieves better performance than existing
learning-free algorithms, while providing competitive
results with learning-based methods. Furthermore, we
demonstrate that the performance of several learning-
free algorithms can be significantly improved by using
particular steps of our algorithm. Lastly, we pro-
pose an approach that can convert our global color
constancy algorithm into a method that is free from
prior information about the scene for mixed illumi-
nation conditions which obtains competitive results
compared to the state-of-the-art.
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