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Abstract—This paper attempts to evolve a general video game
player, i.e. an agent which is able to learn to play many different
video games with little domain knowledge. Our project uses
strongly typed genetic programming as a learning algorithm.
Three simple hand-crafted features are chosen to represent the
game state. Each feature is a vector which consists of the position
and orientation of each game object that is visible on the screen.
These feature vectors are handed to the learning algorithm which
will output the action the game player will take next. Game
knowledge and feature vectors are acquired by processing screen
grabs from the game. Three different video games are used to
test the algorithm. Experiments show that our algorithm is able
to find solutions to play all these three games efficiently.

I. INTRODUCTION

As a challenging problem and simulation environment,
video games have been used for many years in artificial
intelligence. They have some properties which make them an
ideal tool for artificial intelligence research. A lot of progress
has been made in creating artificial game playing agents which
are able to play certain specific games such as chess [1], Go
[2], backgammon [3] and even video games [4]. Most game
agents are based on game knowledge and are usually limited
to a specific game. Recently, more and more researchers are
interested in developing a general artificial game player which
is capable of playing many different video games without game
knowledge [5], [6].

In this paper, we present a game player which is based on
genetic programming [7]-[9]. It uses a population of programs
or individuals. Each individual is able to compute the next ac-
tion of the game player based on current information about the
game obtained from screen grabs. The population of computer
programs is evolved using strongly typed genetic programming
[10]. Whenever a new video game is encountered, this game
player will have to play it a certain number of times. Using
feedback from this game play, the population of programs
adapts to the current game. Once a reasonably good solution
is found, it can be stored in an archive once this game is
encountered again at a later time. Three hand-crafted game
features are extracted from the screen grabs and conveyed to
the learning algorithm as input.

We test our general game player on three different games:
Space Invaders, Frogger and Missile Command. For our ex-
periments we use the Py-vgdl game engine, which is based on
the video game description language (VGDL) [11]. The games
are similar to old Atari 2600 games which have been played
by many players all over the world. The complexity of these
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games lies in between classic board games and modern 3D
games.

Section II briefly summarises previous works on general
game players. Section III describes how we compute feature
vectors from screen grabs. Section IV presents three different
representations of the game state. Section V demonstrates
how the game player is evolved using strongly typed genetic
programming. The conclusions are given in the final section.

II. RELATED WORK

General game playing dates back to the AAAI general
game playing competition in 2005 [12]. This competition
focuses on turn-taking board games. The game rules are not
known to the players in advance. Each game is described in
a logical game description language. The players will get the
game state information from a game manager once the game
begins. The game manager is used to track the game state and
sends game information to the players, e.g. how opponents
move. Successful players mainly use Monte Carlo Tree Search
[13]-[15].

The Atari 2600 games group developed an Arcade Learning
Environment [16] to explore how computers learn to play
games through experience. Naddaf [17] presented two model-
free algorithms: reinforcement learning (Sarsa(\)) and Monte
Carlo tree search in his master’s thesis. Game features were
generated from game screen grabs as well as from console
RAM. Hausknecht et al. [18] have presented a HyperNEAT-
based Atari general game player. HyperNEAT is said to be able
to exploit geometric regularities present in the game screen in
order to evolve highly effective game playing policies. The
game screen is represented as a grid which will be conveyed
to the learning algorithm as input. The avatar is detected using
information gain which is obtained when moving the game
controller and watching the objects move on screen. The same
approach to detect the avatar is also used in this paper. In the
paper [19], they improved upon previous work by adding an
output layer to the architecture of the learning algorithm and
were using three new game features.

Mnih et al. [5], [6] combined deep learning with re-
inforcement learning to learn the game policies from raw
image pixels. Their method was able to create game playing
agents which are comparable to human players. Guo [20]
presented another approach which consisted of deep learning
and Monte Carlo tree search methods. This approach retained
the advantage of learning policies from raw image pixels and
improved the performance of the previous paper. These two



works represent the state-of-the-art technology in the area of
learning policies by observing screen pixels without using
hand-crafted features.

The general video game Al competition has been held in
2014 [21]. The GVG-AI Competition explores the problem of
creating controllers for general video game playing. The game
state information is gained from an emulator rather than from
screen grabs. Perez et al. [22] presented a knowledge-based
Fast Evolutionary Monte Carlo tree search method (Fast-Evo-
MCTS), where the reward function adapts to the knowledge
change and distance change when no game score is gained.
Game state information is obtained from the emulator. Hence,
the environment is fully observable. Their results also show
that the three Monte Carlo tree search methods are superior the
previous methods. Here, we will also compare our approach
with these three MCTS approaches.

Another GP-based game player is presented by Jia et al.
[23]. Three decision trees are evolved to determine the agent’s
behaviours. Each tree is comprised of arithmetic functions
and terminals. This paper attempts to explore more complex
functions, such as logistic functions, to evolve the game
playing policies.

III. IMAGE PROCESSING AND SELF DETECTION

For our method, it is important to know which object on
the screen corresponds to the game player. This information is
obtained by playing the game and observing how the screen
changes as the controls are manipulated. Apart from finding
out which game object corresponds to the game player’s self,
one needs to find out what the game is about, i.e. what
goal needs to be achieved. All the game state information
is obtained from screen grabs. Figure 1 illustrates the games
which we have used for our experiments. We assume that
each object class has one unique colour which can be used
to identify this object. This can eventually be generalised to
more complex visual information such as texture.

The method used to determine the position of the avatar and
of other game objects on the screen is described by Jia et al.
[23]. Since each object can be identified by a unique color, we
simply transform the RGB screen grab to a gray scale image.
Each value in the transformed image corresponds to a unique
hue. The gray image is downsampled to 1/16th of its original
size to reduce the computational complexity. Next, a 9 x 9
neighbourhood non-local maximum suppression algorithm is
used on the down-sampled image to locate individual objects
of the game. The whole process is illustrated in Figure 2.

A. Avatar Identification

The avatar is the entity that can be controlled by the actions
of game player. Its movement depends on the actions of game
player. To locate the avatar on the screen, we need to find
out which object is affected most by the actions of the game
player. This can be done by computing the information gain
after a sequence of moves, i.e 100 frames. This method was
first used by Hausknecht [18].

In order to compute information gain for each object, we
need to get every object’s velocity list. As discussed above, we
do visual processing for each frame, extract and save feature
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Fig. 1: For each game, two snapshots are shown. One from
the beginning of the game and one well into the game.

points in an arraylist. Each feature point is considered as one
object. After one action is executed by game player, objects
in the screen may move a little distance. In order to calculate
every object’s velocity, we need to use two arraylists, where
one is used to save the position of feature points in the previous
frame, the other is used to save their current position. We
then match the elements between these two lists, which should
have the same object class and nearest distance in a local
neighbourhood. If such a match is found, we assume the two
elements which are from two successive frames correspond to
the same object. The displacement between these two points
is the velocity of this object. The position of this object in
the old arraylist needs to be updated using its current position
every time. The velocity is a two dimensional vector (v,vy).
For the sake of computational simplicity, we map them to one
dimension integer value v and save it in a velocity list. The
mapping approach is shown in Equation 1. When v, changes,
the first part of this equation varies between -3 and 3 (7
numbers), so there is a “7” in the second part. mod(x,y) is
a modulo function. The final velocity is mapped to an integer
in the range of [-24, 24].

v = mod(max(min(vg, 19), —19), 5) |
+ mod(maz(min(vy, 19),—19),5) * 7 M

In this paper, a normalised information gain is used, which
is given by:

I(o) = (H(V,) Z(PaH(V0|a)))/H(Vo)- (2)

acA

H(V,) is the entropy of the velocity and H(V,|a) is the
selective entropy, where the action a is fixed. P, is the
possibility that action a appears.

The object o with the highest normalised information gain,
i.e. the object which always moves consistently in the same
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Fig. 2: Image Processing for Space Invaders. (a) is the original
input RGB image. (b) shows the gray image from (a). (c) is
obtained by downsampling image (b). (d) shows the feature
points after using non-local maximum suppression. In figure
(e), shows the feature points on objects.

direction, whenever a certain control is pressed by the player,
is considered to be the avatar of the player.

The identification of avatar only needs to be invoked once
during the learning process. Once we have identified the avatar,
its colour value will be stored in a text file.

IV. GAME STATE FEATURES

We assume that each game has a score count and that the
goal of each game is to achieve a score that is as high as
possible. It is conceivably that for some games a low score is
more desirable. However, this case can be treated in a similar
way. Our game playing agent takes the state parameters of the

game as input and outputs the controls activated by the player.
An obvious question is how many game parameters should be
made available to our game agents. A sparse representation
that nevertheless provides sufficient information to play the
game seems to be desirable.

Since we have used genetic programming, we need to
define the representation of our individuals, i.e. we need to
decide which set of elementary functions and which set of
terminal symbols to use. One possibility would be to provide
the game agent with the complete game information, i.e. each
individual pixel on the screen. Working with some form of
preprocessed input makes probably more sense. As described
above, we extract moving objects where each one is classified
by its colour. Humans probably focus at any given time on a
small number of objects. We only supply the game agent with
the information on the location of the one nearest object for
each class. In other words, the game agent is only able to see
the nearest goal position, the nearest shot fired or the enemy
which is nearest to the game agent. As we will see later on,
this information is sufficient to play the games used for our
experiments. Only five different object classes are considered.
In the case that a game only has less than five different object
classes which can be detected, then the return value of the
corresponding terminal symbol is set to 10000.

We experiment with three different representations for the
terminal symbols. Each representation provides information
about the object which is nearest to the avatar for each class.
However, the way this information is made available differs
for each representation. Representation A (shown in Table I)
contains only the x and y coordinates of the nearest object for
each class relative to the avatar and also the Euclidean distance
between the object and the player’s avatar. Representation B
(shown in Table II) contains the x and y coordinates of the
nearest object for each class relative to avatar, the Euclidean
distance between the object and the player’s avatar, and also
the angle of the vector pointing from the avatar to the nearest
object. Table III contains only the Euclidean distance between
the object and the player’s avatar and the angle of the vector
pointing from the avatar to the nearest object. X and y
coordinates are not made available in Representation C. This
representation may be especially useful for some games, where
the agent needs to rotate and move forward/backward to shoot
and avoid enemies. How object information is made available
through the terminal symbols for the game Space Invaders is
illustrated in Figure 3.

Fig. 3: Object 1 is a bomb. Object 2 is an alien. Angle(A4;)
and Euclidean distance(D;) are demonstrated on this map.



TABLE I: Representation A: The coordinate and euclidean
distance of nearest object for each class relative to avatar.

Terminal Symbol  Description

X x coordinate of the nearest object for class ¢ relative to avatar

Y; y coordinate of the nearest object for class 7 relative to avatar

D; Euclidean distance between the avatar and the nearest object
for class ¢

TABLE II: Representation B: Angle of vector pointing from
the avatar to the nearest object is also included.

Terminal Symbol ~ Description

X x coordinate of the nearest object for class < relative to avatar

Y: y coordinate of the nearest object for class 7 relative to avatar

D; Euclidean distance between the avatar and the nearest object
of class %

A Angle of vector pointing from the avatar to the nearest object
of class 7

V. EVOLVING A GAME PLAYING AGENT USING STRONGLY
TYPED GENETIC PROGRAMMING

Genetic programming starts from a high-level statement
of the problem and does not need problem knowledge. The
population of programs is progressively evolved towards the
optimum solution with high fitness. In this paper, the game
knowledge is unknown and only game snapshot and score
points can be acquired from the game engine. So GP is used
to search for the playing strategies for the games.

Table IV shows the set of terminals used for all our
experiments. This basic set of terminals is extended by the
terminals from Table I, II, III for Representations A, B, and
C. Actions are selected by the terminals Left, Right, Up,
Down, Null and Button. The first four terminals determine
the moving direction of the avatar.

The set of elementary functions is shown in Table
V. We use only three different functions. Two functions
(greaterThan, lessThan) are used to compare game state

TABLE III: Representation C: Euclidean distance between
nearest object for each class and the avatar and the angle of
vector pointing from the avatar to the nearest object.

Terminal Symbol  Description

D; Euclidean distance between the avatar and the nearest object
of class %

A, Angle of vector pointing from the avatar to the nearest object
of class 7

TABLE IV: Terminal symbols.

Terminal Symbol  Description

ERC ephemeral random constant from the range [-400, 400]
Left action: move left

Right action: move right

Down action: move down

Up action: move up

Button action: button press

Null no action

TABLE VI: Parameters for Genetic Programming.

Parameter Value
population size 200
crossover probability 0.4
reproduction probability 0.4
mutation probability 0.1

ERC mutation probability 0.1
mutate.tries 2

builder HalfBuilder
tournament size 3
maximum depth 10

information with the ERC value. ERC values are changed
using normal distributed random numbers. The terminals from
game state features are assigned to the type integer. The ERC
terminals are assigned the type float. The nodes in GP tree are
allowed to connect as parent and child if their corresponding
type objects are type compatible. The if function can be used
to select which command will be executed in next step. The
parameters that we have used for our experiments are shown
in Table VI. We have used tournament selection to select
individuals.

A. Experiments and Evaluation

For our experiments, we have used the game engine de-
veloped by Tom Schaul. Sean Luke’s ECJ package [24] has
been used to implement the strongly typed genetic program-
ming learning algorithm. The game engine and the learning
algorithm are two separate programs. They communicate with
each other through TCP/IP. First, the game emulator is started.
If the player’s self has not yet been identified, it will be
identified using the method for self localisation as described
above. Once the self has been identified, each individual will
be evaluated in turn. Whenever a new individual has been
evaluated, the emulator is informed that a new game needs to
be started in order to evaluate the next individual. The game
state information calculated from the emulator is conveyed
to the learning algorithm via GP terminal symbols. Based
on this information the decision tree will compute the next
action. Once this action has been chosen, it will be sent to the
emulator. The game emulator then executes this action. This
process continues until the game ends. As soon as the game
reaches the end, the resulting score from the emulator will be
sent to the learning algorithm. The average score obtained for
these runs is used as the fitness of the individual.

Our general game player is evaluated on three different
games: Space Invaders, Frogger and Missile Command. Screen
grabs from these games are shown in Figure 1. Space Invaders
is a classic arcade game. The goal is to protect a planet using a
small gun shooting at an alien invasion coming in from above.
Frogger is a classic game where a small frog needs to cross a
road. The player essentially needs to move from the bottom of
the screen to a goal position located at the top of the screen.
While doing that, the player needs to watch out for cars as he is
crossing the road. In Missile Command, the player needs to use
smart bombs to destroy incoming ballistic missiles. The smart
bomb’s moving direction is consistent with avatar’s moving
direction. A smart bomb will destroy all incoming missiles
within a certain radius.



TABLE V: Set of elementary functions.

Function

Description

bool greaterThan (integer argl,float arg2)
bool lessThan (integer argl, float arg2)
void if (bool argl,void arg2,void arg3)

if argl is greater than arg2 return true, otherwise return false
if argl is less than arg2 return true, otherwise return false
if argl is true, command arg2 will be executed, otherwise arg3 will be executed

It is clear that the game engine only recreates the original
game idea but does not use the graphics from the original
games. Different objects can easily be identified through their
colour. Instead of using only the object’s colour to identify
it, we could use texture and other more complex features for
more realistic graphics.

Figure 4 shows the fitness of the best individual for each
generation averaged over 10 runs. For Space Invaders and
Missile Command it will take usually 100 generations to find
an optimal playing strategy. There are 200 individuals which
need to be evaluated in each generation. For each individual,
we run the game 3 times with a different random seed and
game environment. This sums up to 60000 game plays for
these two games in one run. For Frogger, the generation is
set to 150. The number of individuals is 200. Each individual
is tested twice different random seeds and game environment.
Hence, we also have 60000 game plays for Frogger in each
run. Since each game play will take 10 seconds on average,
it will take nearly 2 days for a single run. Due to the large
number of game plays required, we only use 10 runs for each
experiment.

Table VII shows the average best fitness obtained over 100
generations for Space Invaders and Missile Command and
150 generations for Frogger. The standard deviation is also
shown. We use a Mann-Whitney U-test to compare these three
representations. The uncertainty that representation B performs
better than C is in the range [20% 30%]. The uncertainty
that representation B performs better than A is in the range
[10% 20%]. That means that there is no significance difference
among these three representations for these three games.

We also compare our algorithm with three Monte Carlo
Tree Search algorithms: Vanila MCTS, Fast-Evo MCTS and
KB-Evo MCTS [22]. MCTS approximates the value of ac-
tions by random sampling and simulation iteratively. These
values are used to adjust the decision policy. The MCTS
agent accesses the full game state information from the game
engine directly, and it can also advance the game state to a
maximum depth. The research of Guo et al. [20] also reveals
that the performance of Monte Carlo Tree Search is superior
to other methods. Fast-Evo MCTS embedded the roll-outs
within evolution, which can adapt to the number of game
features. KB-Evo MCTS is a MCTS method that biases the
roll-outs by using both knowledge base and evolution. The
comparison results are also shown in table VII. Using the
Mann-Whitney U-test, we find that our algorithm has slightly
worse performance when playing Space Invaders, but it has a
similar performance when compared to the three Monte Carlo
Tree Search approaches when playing Frogger and Missile
Command. This is quite remarkable since our algorithm uses
screen grabs to compute game features whereas the other
algorithms obtain the game state features directly from the
game engine.

VI. CONCLUSION

Video games provide a challenging environment for re-
search in artificial intelligence. In this paper, we have presented
a strongly-typed genetic programming game player. Only
screen grabs are used to compute input features. The score
that the player obtained when playing the game was used to
compute the fitness of each individual. The score was extracted
from the game engine. Three simple genetic programming
representations were evaluated. The results show that there are
no significant difference among them when testing on the three
given games. Our evolved game player performed similarly to
Monte Carlo Tree Search algorithms. Even though we only
used three games for our experiments, this provides a small
step forward in creating a general genetic programming video
game player using only screen grabs as input.
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