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Abstract

A system for corridor following based on properties of the human visual system is
presented. The robot extracts image features using an interest operator to compute
sparse optical flow induced by the translatory motion of the robot. The available
status information from the robot is used to compensate for the known rotatory
movement of the image. Control of the robot is done by transforming the optical flow
to ego-motion complex log space. The difference between the median flow extracted
from the left and right peripheral visual areas is used to control the heading of the
robot. Forward velocity is controlled by trying to keep the perceived optical flow
constant.
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1 Motivation

Control of a mobile robot may be achieved by constructing a complete three
dimensional model of the world, planning a path and then executing the re-
quired steps to move the robot along the path. Of course it is desirable to know
as much as possible about the environment. However, this strategy requires
much computing power which may be used for other, higher level tasks if a
simple control strategy can be employed at the same time. Horswill [17] has
pointed out that it is unnecessary to construct a three dimensional model of
the environment simply to reduce it to a single number such as heading inside
a corridor.
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Aloimonos [1] introduced purposive vision which only uses the data required
to solve the particular task, thereby saving valuable computer resources. This
makes it possible to close the loop and achieve vision during action [31]. Bekey
[2] offered constructive proofs that biologically inspired robot control can suc-
ceed where traditional approaches are difficult or impossible. Like Sandini et
al. [31] we are working in the field of visual robot control with an emphasis on
vision during action. In this context much may be learnt by looking at how
insect vision works [15,16]. Some of this knowledge might be transferable to
the field of robot vision [12].

In particular, researchers have been inspired by insects like bees for robot
control [6,31,33,34,32]. Bees are unable to measure distances larger than a few
centimeters using stereo vision because of the small distance between their
eyes. However, bees are able to infer the range of an object from the perceived
angular velocity provided that the ego-motion of the eye and the bearing of the
object are known [36]. Bees are performing centering behavior in a corridor by
balancing the speeds of the retinal images in the two eyes [37,36]. The higher
the speed of the retinal image, the smaller the distance to the wall. Thus the
bee is located exactly in the center of a corridor if the image speeds of the
left and right eye are equal. Bees seem to be able to perform this centering
behavior independent of the contrast or spatial-frequency content of gratings
along the walls.

However, humans have a more advanced visual system which is different from
the visual system of the bee. An introduction to the human visual system is
given by Tovée [41]. In the human visual system the axis of fixation is facing
forward with a rather small field of view [4]. The spatial resolution is much
higher in the center (fovea) than in the periphery of the retina. Humans per-
ceive the world as stationary even though the eye may be moving. Information
about the desired eye movements is used to compensate for the motion in the
image induced by the ego-motion of the eye [42]. If the eye is moved passively
by using a finger or one tries to change the gaze with a mechanically fixated
eye the world seems to move. Ego-motion of the head is determined by the
vestibular apparatus [4]. Information from the vestibular apparatus could be
used to improve the perceived image. In this respect our work has been more
inspired by the human visual system than the visual system of the bee.

The paper is organized as follows. Section 2 reviews relevant research in the
field of visual robot control in general and corridor following in particular.
Section 3 reviews the complex logarithmic mapping whose properties are im-
portant for our work. Section 4 describes our control algorithm in detail. The
computation of the ego-motion of the camera from the available status in-
formation supplied by our mobile robot is also described. Section 5 describes
some of the experiments performed with our mobile robot. The paper ends
with a conclusion in section 6.



2 Background

Much research has been done in the field of visual obstacle avoidance and
navigation. In this section we briefly review some of these approaches. Research
related to the task of corridor following using optical flow is discussed in more
detail below.

2.1 Visual robot navigation

Moravec [25] used a mobile robot with a sliding camera inspired by the motion
of lizards to determine a three dimensional map of interesting points in an
environment. A path is planned though the environment and subsequently
updated. The robot moves in discrete steps of 1m.

Brady and Wang [3] determine scene structure in the environment of a mobile
robot by extracting corner points. For each point depth is computed using a
stereo camera or a structure from motion approach. Brady and Wang suggest
that it might not be necessary to explicitly compute depth. Useful information
for robot control may be derived directly from optical flow, disparity or rate
of change of disparity. Indeed, Tomasi and Kanade [40] have shown that it is
possible to extract shape and motion from image sequences without calculating
camera-centered depth.

Fossa et al. [11] developed a vision based navigation system using three cam-
eras. Two cameras are used for obstacle detection and avoidance and the third
camera is used for self-localization.

Franceschini et al. [12] developed an artificial compound eye with facets which
was inspired by the fly’s eye. Although control is done continuously the move-
ment of the robot is separated into a purely translational step followed by a
rotational step. Franceschini et al. use this type of motion to determine the
translatory component of the optical flow.

Horswill [17] developed a simple, cheap and robust visual navigation system.
Both the rotational and the translational velocity are under computer con-
trol. Corridor following is done by estimating the heading of the robot and
calculating a measure for the distance to the left and right walls from visual
data. Control of the robot is done in a closed loop except for turning at cor-
ners which is performed open-loop. Horswill emphasizes that only the required
data needed for the task at hand has to be extracted from the visual data,
e.g. it is not necessary to construct a complete 3D model of the environment
just to achieve a corridor following behavior.



Crespi et al. [8] followed a memory-based approach to navigation inside a
corridor. First, images labelled with known lateral displacement and heading
of the robot inside the corridor are used during a learning phase. Lateral
displacement is discretized into three values and heading into three or four
values. During robot control a probability distribution is calculated for the
classes which specifies the new translational and rotational velocity.

Sobey [38] developed a zigzag motion strategy for a monocular robot to avoid
collisions. First an orientation movement is performed to determine the dis-
tance to the objects 60° on both sides of the goal. All subsequent movements
are made in a direction for which a safe distance to travel is known using a
potential field method. A change of direction between 20° and 120° is made
for every move which results in a zigzag motion. Range values are computed
only for a horizontal strip of the image. Sobey has used an action-perception-
planning cycle which acquires 16 images for every translatory motion.

Vogelgesang et al. [43] developed an algorithm for depth perception from radial
optical flow fields. They propose to use their algorithm with a mobile robot.
However if the heading of the robot changes the algorithm has to be reset.

Jochem and Pomerleau [21] developed a very successful vision-based system
for driving on outdoor roads which is also able to perform tactical maneuvers
such as lane changing. The system is based on an artificial neural net trained
by watching a human teacher.

Kosecka [22] represented the environment as a place graph and used visual ser-
voing to move from one place to the next. It is assumed that world coordinates
of the landmarks used for navigation are known.

2.2 Centering behavior

Coombs and Roberts [6] used two cameras to achieve a centering behavior
inspired by the honeybee. The cameras are located at an angle of 60° from the
front of the robot. Coombs and Roberts determine gradient-parallel optical
flow at full spatial resolution for each of the cameras. The maximum optical
flow is determined by a histogram method. Both maxima are compared to
calculate the desired heading of the robot. Coombs and Roberts note, that
this approach works reliable as long as the focus of expansion does not enter
the image. The desired heading is saturated to prevent this from happening.
The gaze of the camera is stabilized as the robot rotates due to the architecture
of the robot. An alternate strategy proposed by Coombs and Roberts would be
to subtract the optical flow, which is observed around the focus of expansion,
from the peripheral optical flow.



Coombs et al. [5] use peripheral normal flow obtained from a camera with a
wide lens to achieve centering behavior. Another camera with a narrow lens
is used to estimate time-to-contact from flow divergence to detect imminent
collisions. This information is used to turn the robot around in a “dead end”.
The cameras are rotationally stabilized by rotating them in the direction op-
posite to the rotation of the robot’s body. A saccade is made if the camera
orientation differs too much from the heading of the robot to align them again.

Santos-Victor et al. [33,34] equipped a mobile robot with two laterally pointing
cameras to achieve a centering reflex also motivated by the behavior of hon-
eybees. This basic centering reflex was extended with a sustaining mechanism
which allows the robot to navigate whenever optical flow is only available from
one of the cameras. Due to their camera setup Santos-Victor et al. assume that
only horizontal optical flow can occur which simplifies calculation of optical
flow. Average optical flow from the left and right camera is used to control the
robot. Santos-Victor et al. derived constraints that have to be met to control
the robot during rotations. By choosing the minimum translational velocity,
the maximum rotational velocity and the setup of the cameras appropriately
these constraints may be met. Santos-Victor et al. also note the possibility of
suppressing robot control during times when the constraints are not met. Both
possibilities worked successfully with their robot. They control the rotational
velocity of the robot with a PID controller. Translational velocity is controlled
by keeping the desired optical flow at a rate of 2 pixels/frame.

Neven and Schéner [27] developed a behavior based vision-guided approach
to homing and obstacle avoidance. Time to contact is estimated from optical
flow which is used to control heading direction and velocity. In the absence
of reliable visual information the robot uses information from dead reckoning.
Neven and Schoner compute optical flow and time to contact from coarsely
sampled images with two cameras (left and right). Neven and Schoner separate
translatory and rotatory motions of the robot. Both forward velocity and
angular velocity are controlled by the estimated time to contact information.
Time to contact estimates close to the center of the image are excluded because
the peripheral information is more reliable. Small rotatory motions that may
occur even if the robot is supposed to perform only a translatory motion
along the optical axis are removed by subtracting the average flow along the
horizontal and vertical meridian.

The approach presented here works with a single camera with the focus of
expansion in view. Data is gathered in a purposive way. Control is done con-
tinuously in a closed loop. Our approach differs from the previous ones by
Coombs and Roberts, Coombs et al., Santos-Victor et al., and Neven and
Schoner. Information about the ego-motion of the camera obtained from the
robot’s status information is used to compensate for the rotatory motion of
the camera. By using sensed velocities instead of the desired velocities a sep-
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Figure 1. Image, image in complex log space and its inverse.

arate algorithm may be used to control the gaze of the camera. Obviously
a centering behavior cannot be achieved with one camera pointing sideways.
Nevertheless it should be possible to achieve centering behavior as long as
both walls are visible and sufficient visual information is present in the visual
areas which are used to control the robot.

3 Ego-motion complex logarithmic mapping

Since we are working with a camera with the focus of expansion in view we
use the complex logarithmic mapping to transform the optical flow calculated
in image coordinates to complex log space. This transformation simplifies the
comparison of radial optical flow. The complex logarithmic mapping has al-
ready been extensively studied by several researchers and has been used in a
number of different areas such as character recognition [28], template matching
[44], extraction of moving objects [18,13], motion stereo [19] and object de-
tection and centering [29]. Complex logarithmic mapping is pseudo-invariant
to size, rotation, and projection scaling [35]. For a fixated object, changes of
size or rotation lead to a linear shift of an invariant image. The complex log-
arithmic mapping performs a conformal mapping of the log polar plane to a
Cartesian plane [39]. The ego-motion complex logarithmic mapping is defined
as [20]:

r(z,y) =1og/(x — zpor)? + (y — yror)? (1)
O(z,y)=tan™" (%) (2)

An image transformed with this mapping is shown in figure 1. The ego-motion
complex logarithmic mapping differs from the complex logarithmic mapping
in that it is not taken about the origin. Instead it is taken about the focus of
expansion (zrop, yrog). For a forward moving observer stationary objects in
the field of view only produce horizontal flow in ego-motion complex log space
[18]. Jain et al. [19] have shown that (assuming a focal length f = 1):



Figure 2. Image, image with sparse optical flow, previous image compensated for
rotatory camera movement, difference picture between image and previous image
compensated for rotatory camera movement.
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Thus the optical flow in ego-motion complex log space is a direct measure for
the distance Z to the objects in view for a known translatory motion.

Tistarelli and Sandini [39] also analyzed the polar and log polar mapping and
determined several advantages that may be gained by using a polar or log
polar mapping. In addition to the already mentioned invariance property to
scaling and rotations the complex log mapping also performs a data reduction
due to the non-uniform sampling of the image. Motion equations which relate
ego-motion to the optical flow are simplified and time to impact may be easily
calculated using a complex log mapping.

Schwartz [35] has shown that the retino-striate mappings of the rhesus, squir-
rel and owl monkey may be described by a complex logarithmic mapping.
With the direction of the optical axis facing forward humans could be using
the complex logarithmic mapping to achieve obstacle avoidance or centering
behavior. We are not suggesting that human centering behavior is actually
achieved the way we constructed our algorithm. We are investigating if it
is indeed possible to achieve centering behavior with monocular vision and
the focus of expansion directly in view for robot control using the complex
logarithmic mapping.

4 Control of a mobile robot using foveated vision

The control algorithm is divided into three parts. First relevant information
is extracted from the images by locating interesting points with an interest
operator. These points are then used to compute a sparse optical flow field
which is transformed into complex log space. An image with a sparse optical
flow field in image coordinates is shown in figure 2. Finally, the difference
between the left and right optical flows is used to control the robot. The input
to the algorithm consists of an image I(fy) taken at time ¢,. The algorithm



works on two images at any given time. The data from the previous iteration
of the control algorithm, image I(t1), is stored internally.

4.1 Feature extraction

Interesting points are located in the input images which simplify the computa-
tion of optical flow. Let the interesting points of image I(t5) be F(t,). Because
of the aperture problem [20] dense optical flow describing the actual motion is
difficult to compute. Most methods compute optical flow in an iterative way
(e.g. Horn and Schunck [14]). Due to temporal Gaussian smoothing, several
images are often needed [34] which introduces an additional delay because
optical flow is only computed for the center image. Santos-Victor et al. [34]
therefore separate image acquisition and evaluation by grabbing a set of five
images at video rate and then analyzing the data. In contrast to the work of
Santos-Victor et al. we only grab one image for each iteration of the control
algorithm.

To detect interesting points in the image, we are using the Moravec interest
operator [24,25]. It is a simple operator which computes the local maxima of
the minimum variance of local image intensities in the horizontal, vertical and
both diagonals. Computation of optical flow for a set of interesting points is
easier than the computation of full optical flow due to the aperture problem
[20]. The type of features relevant to control the robot obviously depends
on the environment of the robot. Using genetic programming [23] (a class of
evolutionary algorithms which can be used to evolve variable sized, hierarchical
individuals) we are evolving interest operators which are optimal according to
some measure. This would make the first stage of the algorithm, extraction of
interesting points for the calculation of optical flow, adaptive. We previously
evolved edge and interest operators [9,10] by directly incorporating the output
of the desired operator into the fitness calculation and are now working towards
adaptive feature extraction where only the desired qualities of the operators
are specified.

4.2 Sparse optical flow in ego-motion complex log space

The ego-motion complex log mapping is only defined for a translatory move-
ment of the observer. However to control an arbitrary moving mobile robot
we compensate for any rotatory movements of the camera. A difference image
between the current image and the previous image, compensated for rotatory
movements of the camera is shown in figure 2. This image shows how accurate
the compensation of rotatory ego-motion is performed. We compensate for the
rotatory movement of the camera by transforming the image to subtract this



Figure 3. Movement of the camera.

component from the optical flow. This leaves only the translatory component
of the optical flow which is relevant to the centering behavior. We are using
the robot’s status information (translational and rotational velocity, pan and
tilt angles) to predict the image I(Z,) at time t, from Image I(¢;) due to the
rotatory motion of the camera. It is assumed that the robot moves exactly
as is derived from the status information. Indeed, the human visual system
makes a similar assumption as has already been described above.

In the following text we are using the notation of Craig [7] to describe co-
ordinate transformations. Let P = [X(t,),Y(t,), Z(t,),1] be a point in
the camera frame {C(t¢;)} at time ¢;. Then the coordinates of this point are

Cl)P = [X(ty),Y (t2), Z(t3),1] in the camera frame {C(t;)} at time t,. Let

gEgT be the homogeneous transformation from the camera frame {C(¢;)} to

the camera frame {C(t3)} (figure 3). Thus we have

Clta)p gﬁiiiT Ccm)p (4)
X(ts) ri iz Tis e | | X (f)
Y(ta)| |rare2rasty | |Y(th) (5)
Z(t2) 31 32 T3z by | | Z(t)
1] \oo o 1) 1

Using perspective projection z(t) = f% and y(t) = f% with focal length
f this gives the following transformation for every image point for a rotatory
camera motion [26]:

_ (t1) (t)

©lt2) = fT31iE(t1) + r3y(th) + fras (6)
L rax(t) Fray(ty) + fros

ylta) = fT31iE(t1) + r3y(th) + fras (7)
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Figure 4. Areas of complex logarithmic space used to control the robot.

Sparse optical flow is computed by matching image intensities in a local area
around the interesting points. We are matching interesting points F'(¢3) from
the new image at time ¢, with the interesting points F(f,) from the image
at time ¢5 which has been compensated for camera rotations. The search is
constrained to those points that radiate outward. The quality of the match
(squared differences in a local area around the points) is scaled with the dis-
tance of the match. Thus preference is given to a close match. After the in-
teresting points in the predicted image I(t;) and the actual image I(t,) have
been matched, sparse optical flow has been determined in the original image.

The optical flow radiates outward from the focus of expansion for a forward
motion of the camera. Provided that peripheral optical flow is available from
the left and right sides, these flow vectors may be used to achieve a center-
ing behavior with the focus of expansion in view. The focus of expansion is
calculated from the status information of the robot.

TFOE :f tm/tz (8)

YrFOE ty / tz

The sparse optical flow is then transformed to complex log space according to

’rma,x
r= Tog 1o log \/(x — zror)? + (¥ — yror)? (9)
ema,x — -
6= <7r+tan ! (—w>> (10)
2m Y — Yror

where r and 6 are the coordinates in ego-motion complex log space and 7y,
is the maximum radius in coordinates of the source image. The number of
pixels in complex log space used for the radial direction is specified by ryax
and 6.5 is the number of pixels used for the angular direction. Thus we have
Pmin <7 < Tmax and 0 < 0 < Oy With rmin = 222 log %2, Optical flow is
computed first for the acquired image and then transformed to complex log
space because the untransformed images have a much larger resolution than

the transformed ones. Of course optical flow could be computed directly for
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Figure 5. Colin, a Real World Interface B21 robot and the camera model with
attached frames.

the already transformed images. However due to the reduced image size, the
number of interesting points that can be extracted from the transformed image
is reduced. We experimented with several different methods, e.g. extraction
of features from the transformed image, calculation of full optical flow for the
original images and the transformed images. The approach described here was
found to be the one that worked best.

We only use the optical flow located in the area O, < 0 < Oimax, Ormin <
0 < Oimax and 7., < 7 < rpax as shown in figure 4. For our experiments
described below we chose the values Oinin = 45°, Oimax = 135°, Ormin = 225°
and 0., = 315°. This effectively excludes the optical flow from the ceiling and
the floor which cannot be used to control the robot. Also we excluded the area
directly around the focus of expansion since the optical flow is usually small in
this areas and might be further disturbed due to incorrect compensation for the
rotatory motion of the camera. Since it is impossible to determine exact data
from sensor information we exclude this area because its information is too
unreliable. For our experiments we have chosen 7/ . = 0.75("max — "min) + "'min-
Let f; and f, be the median of the optical flow extracted from the left and
right peripheral areas respectively.

4.3  Computation of camera motion

The homogeneous transformation of the camera movement may be calculated
directly from the status information of the robot. Let {C'} be the camera
coordinate system and {R} the coordinate system of the robot base. The
coordinate frames for our camera setup are shown in figure 5. We split the
camera transformation into three parts. The first describes the location of the
camera relative to the robot’s base at ¢, the next describes the movement
of the robot and the last describes the location of the camera relative to the

robot at time ¢;. Then the homogeneous transform ggng which transforms
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coordinates in the camera frame {C(¢1)} to coordinates in the camera frame
{C(t2)} may be calculated as

C(t: ct R(t R(t
cgtng = REé;T ' REt?;T ) C’( lgT (11)

where ZEZ;T is the transformation from the coordinate system of the robot

{R(ty)} to the coordinate system of the camera {C(t2)} at time ¢, ggng
(1)

describes the robot movement and g(ﬁ)T transforms the coordinate system of
the camera {C(¢1)} to the coordinate system of the robot {R(¢;)} at time ;.

ggf;T is calculated from the status information of the robot as

HEIT=Ry(~w(ta—t1)) - Dx(—v(ta—t)) (12)

where Dy describes the translatory motion of the robot along the X-axis
with translational velocity v and R describes the rotatory motion of the
robot where w is the rotational velocity. The matrixes relating the camera
coordinate system to the base coordinate system are computed using standard
manipulator kinematics.

4.4 Robot control

A PID controller [7] was implemented to control the rotational velocity of
the robot. The gains have been determined experimentally and were set to
k, = 5.0, k; = 0.1 and k4 = 0.005 during the experiments described here. The
control law is given by

wa(t) = kye(t) + & / e(r)dr + kaé(t) (13)

where e(t) = f; — f, is the difference between the extracted flow on the left
and right peripheral visual areas in complex log space and wy specifies the
desired rotational velocity of the robot. In case no interesting points can be
determined on one side, the robot moves towards the other side with a constant
velocity. This behavior is inspired by the work of Sobey [38]. It is safer to move
into a direction for which the distance to the nearest obstacle is known. If the
robot turns to the other wall it will be repelled by it as soon as some of the
interesting points of the other wall enter the peripheral area.

12



The translational velocity vy of the robot is set according to the control law

Vmax i H0max > Umax,
Vg = %Umax if Umin S }C_vaa,x S Umax» (14)
Umin if }%vmax < Umin

where v and v,y are the minimum and maximum translational velocities,
fa is the desired radial optical flow in the original image and f, is computed
from the maximum of f; and f, which is transformed back into the original
image. The control law could also have been formulated by transforming the
desired optical flow to complex log space. This control law tries to keep the
optical flow constant at about f; by slowing the robot down as it approaches a
wall. Speed of the robot is increased again as the actual optical flow decreases.
Santos-Victor et al. [34] also used velocity control to keep the measured optical
flow constant using a sigmoid function for the velocity-control loop.

A distributed client server architecture is used to control the robot. Therefore
to obtain accurate status information from the robot a delay of 150ms is used
after a change of velocity and the old image is discarded. This allows us to
achieve accurate compensation of the rotatory motion of the camera. The PID
controller produces a smooth trajectory with only small rotations. Therefore
we used a much simpler control strategy for most of our experiments. This
strategy turns the robot to the left with constant velocity if the optical flow
in the peripheral area is larger on the right side than on the left and to the
right if the optical flow on the left is larger than the flow on the right. Only
in the rare case where both flows would be exactly equal we stop the rotatory
movement. However this almost never happens. This control strategy produces
an oscillatory behavior where the robot is constantly turning to one side or
the other. Because we want to perform robot control during rotatory motions
this is a suitable strategy to test our robot.

5 Experiments

For our experiments we used Colin, a Real World Interface B21 mobile robot
(figure 5) with a Directed Perception pan-tilt unit. We only used one camera
for the experiments described here. The camera setup can be seen in figure 5.
Images were acquired with a resolution of 128 x 128 pixels and the transforma-
tion to complex log space was done with 7. = 32, rgc = 64 and 0, = 32.
The experiments were done in the corridor at our lab. The width of the corri-
dor was approximately 1.41m. The environment was not modified by attaching
structured wall paper which would have simplified the computation of optical
flow. However the environment did contain several posters mounted on the
walls along the corridor.
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Figure 6. Path of the robot recorded from odometry data for different starting
positions. The two on the left were recorded using the simple controller and the two
on the right were recorded with the PID controller. The images along the path are
a subset of the images that were recorded during execution of the algorithm. The
path is overlayed on a map of the environment.

With this setup we conducted a series of experiments with the simple controller
and with the PID controller. During the experiments with the simple controller
the robot was moving with a constant forward velocity of 40<F*. During the
experiments with the PID controller minimum translational velocity v, was
set to 20" and the maximum translational velocity vma, Was set to 55<*. The
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desired optical flow in the original image was set to 3 pixels. Figure 6 shows
the results for the simple controller and for the PID controller. We recorded
the path travelled by the robot using the robot’s odometry data. The images
shown are a subset of the same images which were used to control the robot
during the runs.

As can be seen in the images after a distance of approximately 11m the corridor
is 0.35m wider than the remainder of the corridor. This part of the corridor
is approximately 3.21m long. Just before this part of the corridor there is a
staircase located on the right side of the corridor. In these areas the path of the
robot is slightly offset to the right side of the corridor. The path recorded with
the PID controller is much smoother than the one using the simple controller.
During the runs which started in the middle of the corridor 126 images (1.77
frames per second) were recorded with the simple controller and 125 images
(1.73 frames per second) with the PID controller. The robot travelled 27.1m
respectively 26.9m during the runs. Distance was measured using the robot’s
odometry.

6 Conclusion and ongoing research

We have demonstrated that centering behavior may also be achieved with a
single camera with the focus of expansion in view. Comparison of the optical
flow for the left and right peripheral areas is done in ego-motion complex log
space. Since only the optical flow due to translation of the robot may be used
for the centering behavior we compensate for the image movement which is
due to the rotatory component of the camera motion. To compensate for the
image movement we use the status information which is directly available from
the robot. Using the available status information may speed up robot control
by eliminating the need to derive the ego-motion of the robot from the images.
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