Visual navigation using ego-motion information
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Abstract

Ego-motion information which is available from the robot status information can be
used for visual navigation. A system for visual navigation inside corridors is presented.
Experimental results are reported both for a quantitative and a qualitative approach. For
the quantitative system ego-motion information is used to determine depth information for
interesting points in the image using a motion stereo approach. The qualitative approach
is based on properties of the human visual system. In the qualitative system no explicit
depth is computed. Instead, sparse optical flow from the left and right peripheral areas
is used to achieve centering behavior using a complex logarithmic mapping. Ego-motion
information is used to compensate for rotatory camera motions.

1 Motivation

Very often visual systems for mobile robots are constructed without taking into account
additional information which might be available. The system only takes a series of images
as input and produces the control commands as output. Valuable resources are used to
compute information about the ego-motion of the robot directly from the images. We show
that the status information (current angular and linear velocity of the robot and position
and velocity of the camera) supplied by the robot can aid visual navigation to achieve vision
during action. In addition the use of status information decouples the camera from the robot.
Thus the camera can be used by an additional control algorithm for object recognition or
visual attention.

2 Background

The importance of vision during action is discussed in detail by Sandini et al. [24]. Moravec
[18] extracted interesting points from images and calculated distance information using a
sliding camera. This information was then used to navigate the robot in its environment.
Fossa et al. [7] used three cameras for visual navigation. Two were used to detect obstacles
on the floor and one for self-localization. Brady and Wang [2] used stereo and structure from
motion to reconstruct the environment from an image sequence for a mobile robot. They
argued that it might not be necessary to compute depth explicitly. Tomasi and Kanade [32]
have shown that the shape of an environment may be reconstructed from an image sequence
using a factorization method without the necessity to compute depth as an intermediate
step. In principle it is possible the completely reconstruct the environment from an image
sequence, however these approaches are computationally very intensive. Horswill [11] has



pointed out that it is not necessary to completely reconstruct the environment of the robot
simply to compress this information down to a single number for a task such as corridor
following. A vision system only has to compute what is required for the current task which
leads to purposive vision [1]. Crespi et al. [6] used a memory-based approach to navigation.
The robot is controlled depending on the similarity of current and previously seen images
of known attitude and lateral displacement. Sobey [28] used a monocular robot moving in a
zigzag motion to estimate the range to the objects in its environment. Neven and Schéner [20]
extracted time-to-contact information from optical flow using piecewise linear paths. Jochem
and Pomerleau [15] realized a very successful adaptive vehicle control system using a neural
net approach. The network is trained by watching a human driver. Kogecka [16] used visual
servoing to position the robot in front of a door and for wall following.

Much may be learnt by looking at insect vision [10]. Some of this knowledge can be
transferred to robot vision [8]. Indeed, several researchers have already built systems for
corridor following based on properties of the visual system of bees [4, 25, 26]. Bees achieve
centering behavior by balancing the speed of the retinal image in the left and right eye [30, 29].
However these approaches all assume small rotatory movements of the camera or rely on a
camera setup such that the rotatory movements of the camera may be neglected.

Our approach differs from the above in that we use a foveated vision system together with
status information from the robot to control the robot also during rotatory movements of the
camera. We use only a monocular camera with the optical axis facing forward as opposed to
sideways. Instead of being based on the bee’s visual system we derive our inspiration from
properties of the human visual system. An introduction to the human visual system is given
by Tovée [33]. Humans could be using the complex logarithmic mapping to derive distance
information without explicitly computing depth. Therefore we briefly summarize some of the
important results about the complex logarithmic mapping. Jain et al. [13] showed that the
radial component in ego-motion complex log space for a translating observer is a measure
for the distance of the corresponding point. Vogelgesang et al. [34] also used radial optical
flow fields for depth perception. Tistarelli and Sandini discuss the advantages of polar and
log-polar mapping for the estimation of time-to-impact from optical flow [31]. Complex
logarithmic mapping is pseudo-invariant to size, rotation, and projection scaling [27]. Due to
these properties it has been used in a number of different areas such as extraction of moving
objects [12, 9] and the centering of peripheral doors [21].

Information about ego-motion of the human head is supplied by the vestibular apparatus
[3]. Also, information about the desired motion of the eyes could be used to compensate
for the ego-motion of the eyes [22]. By compensating for the rotatory component one can
assume a quasi-translating observer. In our case the information about the ego-motion of the
robot is coming from the robot’s sensors. By using the status information of the robot and
the camera instead of their desired motion it is possible to use an independent algorithm for
camera control. In this way camera and robot are effectively decoupled.

3 Visual navigation using ego-motion information

Our system is based on the computation of ego-motion from the available status information
of the robot. Therefore we first describe how the ego-motion of the camera is computed.
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Figure 1: Colin, a Real World Interface B21 robot and movement of camera with transfor-
mations for motion due to pan/tilt unit and base of the robot.

3.1 Calculation of ego-motion
Let gg?;T be the homogeneous transformation [5] that describes the camera movement
that occurred between time ¢; and time ¢5.
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For our robot this transformation is computed as gEZ’;T = ggnggg?;Tg{&;T where ggng
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describes the transformation from the camera frame to the robot base at time 9, R(tlgT
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describes the movement of the robot base from time #; to time t5 and g(ng describes the
transformation from the robot base to the frame of the camera at time t; (figure 1). Each of
the individual transformations may be calculated from status information available from the
robot. The transformations from the robot base to the camera frame may be calculated using
standard manipulator kinematics. Let Rz be a rotational transformation about the Z-axis
and Dx a linear transformation along the X-axis of the robot. The transformation describing
the robot movement can be approximated as g(ii’gT = Ry (—w(ty—t1)) -Dx(—v(ta—t1)) where
w is the angular velocity and v is the linear velocity of the robot.

Let (2(t1),y(t1)) be the image coordinates of a point at time #; then the same point has
the following coordinates at time ¢5 assuming perspective projection [19]:

slty) = riz(t) +riey(th) —|-fr13—|-f% (2)
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where f is the focal length of the camera and 7Z(t;) is the distance of the point in the
coordinate system of the camera at time 4.



Figure 2: Image, image with sparse optical flow (after compensation for rotatory camera
movement), previous image compensated for rotatory camera movement, difference picture
between image and previous image compensated for rotatory camera movement.

3.2 A quantitative approach using motion stereo

Before we describe the approach to visual navigation based on properties of the human vi-
sual system we describe a quantitative approach which computes depth explicitly. First,
interesting points are extracted. Currently we are using the Moravec interest operator
[17, 18] to extract the points. Correspondence between two points in successive images is
established by matching small areas around the interesting points. Equations 2 and 3 can
be solved for Z(t;). The accuracy of the calculation depends on the amount of transla-
tory motion which occurred during the time the two images were taken. Obviously, depth
can only be determined provided that |z(t3) — Z(t2)| > 0 or |y(ta) — §(t2)] > 0. Where
(%(t2), y(t2)) are the coordinates of the point due to the rotatory motion of the camera. A
larger displacement of a point in the image plane due to the translatory motion of the cam-
era provides more accurate depth information. Therefore equation 2 is used to calculate
depth if |z(t3) — Z(t2)| > |y(t2) — y(t2)| and equation 3 is used otherwise. This gives us
knowledge of the point’s 3D coordinates relative to the camera as X (t;) = %m(tl)Z(tl) and
Y(t) = %y(tl)Z(tl) using perspective projection. Let COP = [X (), Y (t1), Z(t1),1]7 be
the point in the camera frame. Then the coordinates of the point in the robot frame can
be calculated as F)P = g&gTC(“)P = [X,(t1), Ye(t1), Z-(t1), 1]7. Distance to the points

projected onto the floor plane is then calculated according to d(t1) = \/X2(t;) + Y,2(t1). This
gives us quantitative data which can be used for visual navigation.

3.3 Qualitative approach based on properties of the human visual system

We realized a qualitative approach to visual navigation based on properties of the human
visual system. QOur qualitative system works as follows. We compensate for the rotatory
motion of the robot using information about the ego-motion of the robot. For rotatory camera
motions one can assume that the distance 7 to the objects in view is large compared to the
translatory movement of the camera (¢,,t,,t, < Z). Under this assumption using perspective
projection one can compensate for the rotatory motion of the camera by transforming the
points (z(¢1),y(t1)) in the image according to [19]:

riz(t) + r2y(t) + fris
ra12(t1) + ra2y(t) + fras

ro12(t1) + raay(t) + fras
ra12(t1) + ra2y(t) + fras

f(tg) = f and ﬂ(tg) = f

(4)



Figure 3: Image, image in complex log space and its inverse.

where f is the focal length of the camera. Let f(tg) be the resulting image.

Sparse optical flow is computed between the predicted image I(ty) and image I(ty) for
interesting points in the image (figure 2). After the interesting points are matched, the optical
flow is transformed to ego-motion complex log space [14]. All points with coordinates (z,y)
in the image are transformed to their radial and angular coordinates (r, 6)

r = sy log \/(m — 2ror)? + (¥ — yror)? and 0 = sy (77 + tan™! (—m)) (5)
Y — Yrowr

where s; and sy are scaling factors (figure 3). The transform is taken about the focus of
expansion (2ror, yror) which can be computed from the status information of the robot.
This transform can be used to obtain distance information for a translatory moving observer.
Jain et al. [13] showed that the radial component of the optical flow in ego-motion complex
log space is a measure for the distance of the corresponding point. Using this method one
would only be able to let the robot move along piecewise linear paths. Thus control of the
robot would be done open loop whenever the robot turns. To close the loop during rotatory
movements we use the robot’s status information to subtract the component of the optical
flow which was induced by rotatory motion of the camera.

3.4 Corridor following behavior

To achieve corridor following behavior we use the median of the data obtained from the
sparse optical flow from the left and right peripheral visual areas. The quantitative approach
calculates distance information for these points whereas the qualitative approach uses the
optical flow directly. To stay in the center of the corridor the steering direction of the robot
has to be adjusted such that the data from the left peripheral area and the right peripheral
area is about equal. The difference between the data is our error signal used to control the
robot.

4 Experiments

Two sets of experiments were performed with a Real World Interface B21 robot. The robot
moves with constant forward velocity of 0.3%*. First a simple controller was realized to test
the performance of the algorithm in the presence of rotations. Depending on the sign of the
error signal the robot turns either right or left with constant velocity of 7. This produces
oscillatory behavior which can be used to test our robot. In addition to this simple controller



ath of the robot recorded from odometry data. The two on the left were recorded

using the quantitative approach, the two on the right were recorded using the qualitative
approach. The simple controller was used while the first and the third path was recorded.

P

Figure 4:

The PID controller was used while the second and the fourth path was recorded. The images
shown along the paths are a subset of the images that were recorded during execution of the

algorithm.



a PID controller was realized which eliminates the oscillatory behavior. If features are lacking
on one side a turn is made towards the side with features. This is done because it is safer to
move towards the direction for which distance information is known [28]. Experimental data
from our system for both methods and both controllers is shown in figure 4.

5 Conclusion

A system for visual navigation inside corridors was presented. The quantitative approach uses
the known ego-motion to explicitly calculate the depth of interesting points in the environ-
ment. The qualitative approach is based on properties of the human visual system and does
not explicitly calculate depth. Here, information about ego-motion is used to compensate for
rotatory camera motions. Sparse optical flow due to the translatory motion of the camera
is transformed into complex log space which is then used to navigate inside a corridor. This
shows that the use of ego-motion makes it possible to achieve centering behavior also during
rotatory camera motions using the complex logarithmic mapping.
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