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Abstract

Genetic programming makes it possible to
automatically search the space of possible
programs. First we evolved a behavior-based
control architecture using computer simula-
tions. Then we replicated one of the exper-
iments with a service robot, showing that
Koza’s classic experiment of evolving a con-
trol architecture can be transfered to the real
world with a change of representation. The
use of a service robot necessitates safety mea-
sures which are also explained. Results are
reported for the experiments using computer
simulations and with the real robot.

1 MOTIVATION

Many mobile robots are carefully programmed by
hand. Apart from repetitive tasks which may simply
be recorded, programming robots to complete tasks in
arbitrary environments is a difficult process which usu-
ally takes a long time. The difficulty of the task i1s due
in part to unforeseeable interactions between the robot
and the environment. In addition, a handwritten pro-
gram may behave very different in reality from the way
it was intended to perform. Using Darwinian evolution
this difficult process may be automated (Braitenberg
1984). We are investigating the question if genetic
programming (Koza 1992; Koza 1994; Banzhaf et al.
1998) can be used to evolve a behavior-based control
architecture for a service robot, a Real World Interface
B21 (Fig. 1), using sonar sensors to navigate inside a
corridor.

Much research has already been done in evolutionary
robotics. Issues in evolutionary robotics are discussed
by Harvey et al. (1993). An overview about the field is
given by Matari¢ and Cliff (1996) and by Meyer et al.
(1998). The evolution may be performed in simulation,
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Figure 1: The real robot,a RWI B21,in its environment
(left). The robot’s radius is approximately 26.7cm. A
drawing of the robot seen from above (right). The
front of the robot is marked with a vertical line.

in the real world or in a mixture between the two (Nolfi
et al. 1994). The importance of using real robots as
opposed to simulated ones is emphasized by Brooks
(1992). Provided that reality is simulated accurately
enough, such that results are transferable, computer
simulations may be used (Miglino et al. 1996). Simula-
tions may be used to speed up the search for a suitable
representation as well as parameters for the evolution.
Most work in evolutionary robotics focused on the use
of neural nets as a control architecture, e.g. (Flore-
ano and Mondada 1994; Mondada and Floreano 1995;
Nolfi 1997). With a predefined neural architecture one
still has to search for the one best suited for the task.
Harvey et al. (1997; 1993) evolved the architecture of
a neural net using a variable length genotype.

2 BACKGROUND

In contrast to these approaches we are exploring the
use of genetic programming for evolutionary robotics.
Genetic programming offers the advantage that arbi-
trary elementary functions may be used which oper-
ate on any level of abstraction from low-level machine
language to high level action primitives. Some of our
results were reported in (Ebner 1998).



Koza (1994) evolved a program using computer simu-
lations to control a robot to mop a 8 x 8 grid which also
contained some obstacles. In a more realistic setting
but also with discrete movements, Koza (1992) evolved
a behavior-based control architecture (Brooks 1986)
realizing a wall-following behavior for a mobile robot
using computer simulations. Ross et al. (1996) consid-
ered using the task of evolving a wall-following robot
as a benchmark problem for the application of genetic
programming to emergent robotic behavior and ana-
lyzed the search space. Reynolds (1994d) evolved an
obstacle avoidance behavior for a simulated robot. In
other experiments, Reynolds used noise to promote
the evolution of robust controllers (Reynolds 1994b;
Reynolds 1994c). He also investigated the influence
the representation had on the difficulty of the problem
(Reynolds 1994a). Nordin and Banzhaf (1995, 1997a,
1997b) were the first to use genetic programming to
evolve a control architecture for a real miniature mo-
bile robot (Khepera) using infrared sensors. Olmer et
al. (1996) evolved real-time behavioral modules for a
miniature mobile robot using the same representation.
An overview is given by Banzhaf et al. (1997). Wilson
et al. (1997) evolved hierarchical behaviors for a Lego
robot. Lee et al. (1997) evolved behavior primitives
and behavior arbitrators for a Khepera robot using
genetic programming.

Our work differs from the above in that we are evolving
a hierarchical behavior-based control architecture for a
service robot. Koza and Reynolds only used computer
simulations. Banzhaf et al. worked with a miniature
mobile robot and used a different type of genetic pro-
gramming. They evolved linear genotypes of machine
code instructions. Wilson et al. did not use a condi-
tional statement in their set of primitive functions. In
addition, to our knowledge, it 1s the first time that a
control architecture is evolved which uses sonar sen-
sors to control a service robot. A service robot is very
different from a miniature mobile robot in many re-
spects. Experiments with a miniature mobile robot
may be continued even if the robot bumps into a wall.
The robot either comes to a halt or slides along the
wall. A service robot is able to exert a large force
and may produce a considerable damage if it crashes
into an obstacle. Therefore safety measures have to
be taken. We now start by describing the representa-
tion and the safety measures which we used to evolve
a control architecture for this mobile robot.

3 REPRESENTATION

Koza (1992) used a population size of 1000 and was
able to evolve an individual with 145 nodes capable of
solving the task in generation 57. We had to limit the

size of the population to 75 and the number of genera-
tions to 50 because we wanted to perform one of the ex-
periments also with the real mobile robot. Increasing
either number would have prolonged the experiment.
With this setting the experiment with the real robot
took two months to perform. After preliminary exper-
iments with Koza’s original representation yielded no
results we tried to reduce the search space. This 1s
most easily achieved by reducing the number of sonar
In addition, we continuously controlled the
heading of the robot which moved at constant speed
as opposed to discrete movements which were used in
Koza’s representation. The following representation
was used for all experiments which are described be-
low.

SEISOrs.

3.1 TERMINALS

The 24 sonar sensors of the robot are combined into 6
virtual sensors as shown in Fig. 1: FL (front left), FM
(front middle), FR (front right), BL (back left), BM (back
left), BR (back right). Each of the 6 terminals returns
the minimum value measured by the corresponding 4
physical sensors. Because of reflections sometimes a
larger value may be measured by a physical sensor.
Thus taking the minimum increases robustness. In ad-
dition to the 6 virtual sensors we also use the terminal
SS which returns the minimum value of all 24 physical
sensors. The two constant terminals EDG (desired edg-
ing distance) which returns 50cm and MSD (minimum
safe distance) which returns 70cm are also included in
the set of terminals.

Instead of using discrete robot movements our robot
moves at a constant speed of 0.1 meters per second.
The rotational speed may be set to —40, 0 or +40 de-
grees per second. The following terminals control the
rotational velocity of the robot TL (turn left), RHALT
(halt rotation) and TR (turn right). TL returns the av-
erage value of the physical sensors 11 and 12, RHALT
returns the average value of the physical sensors 12
and 13 and TR returns the average value of the physi-
cal sensors 13 and 14.

3.2 PRIMITIVE FUNCTIONS

As primitive functions we used the four argument con-
ditional IFLTE and the two argument function PROGN2.
IFLTE evaluates the first two arguments. If the return
value of the first argument is less than or equal to the
second the third argument is evaluated otherwise the
fourth argument is evaluated. The primitive function
PROGN2 evaluates its two arguments in sequence and
returns the value of the second argument.



3.3 FITNESS CALCULATION

To evaluate the fitness of the individuals each con-
trol algorithm was tested for a fixed number of fitness
cases. Raw fitness was calculated as the mean over all
fitness cases. Raw fitness was to be minimized. For
each fitness case the individual was evaluated for a
maximum of b minutes. The evaluation was aborted
if at any time during the 5 minutes one of the physi-
cal sonar sensors reported a range closer than 40cm or
one of the robot’s tactile sensors was activated. The
tactile sensors were activated if a part of the robot’s
enclosure was pressed against the robot. Due to re-
flections of the sonar beams of the real robot it could
occur that the robot bumped into a wall while none
of the sonar sensors reported a value that would have
aborted the evaluation. After each evaluation we cal-
culated the fitness for this fitness case. After the fitness
was calculated, the robot was automatically turned in
a direction facing away from any obstacles and then a
15cm move was made in this direction. This was done
to give all individuals a fair chance of survival.

For the fitness calculations we used a mixture between
survival time and amount of rotatory movements done
during that time. The robot tried to maximize survival
time and minimize the number of rotations. This was
done to prevent evolution from finding solutions where
the robot only runs around in circles and thereby
avoids bumping into any walls. In principle, pareto
optimization should be used to optimize a function
according to different criteria (Fonseca and Fleming
1995). However, the problem of choosing a suitable ar-
chitecture among the evolved solutions remains. This
would have to be done by visual inspection of the be-
havior. For our experiments we have used fitness func-
tions which are similar to fitness functions that have
previously been used in evolutionary robotics. Below
we only specify how the fitness for one fitness case was
calculated. To simplify the notation we are using the
following variables. Let ¢ be the time until the robot
bumped into a wall and T the total time available to
the robot during one fitness case. Then D = % speci-
fies the normalized survival time of the robot. Let r;
be the sum of all signed rotations the robot made dur-
ing the fitness case and let w be the rotational velocity
of the robot. Then R, = % measures the amount
of unbalanced turning of the robot during one fitness
case.

4 EXPERIMENTS

A number of experiments were performed using com-
puter simulations. Two processes were used, one mod-
elled the robot in its environment and the other ex-

turn left if front is blocked

center robot inside corridor

Figure 2: Control architecture for centering behavior.
The conditional which centers the robot inside a cor-
ridor was found in one of the runs using genetic pro-
gramming. The top layer was added manually.
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Figure 3: Paths of three different individuals for two
environments. The paths on the left, middle, and right
were produced by the individuals shown in Fig. 2, 4,

and b respectively. The robot is shown in the position
at the end of the fitness test.

ecuted the control algorithm. Movement commands
were sent from the control algorithm to the robot sim-
ulator. Sensor variables of the simulator were read
by the control algorithm. Because two separate pro-
cesses were used, small delays might be introduced into
the system due to the scheduling mechanism of the
operating system. Results achieved in simulation do
not necessarily carry over into the real world. There-
fore, one of the experiments was repeated with the real
robot. For all experiments the following main param-
eters were used. A population size of 75 individuals
was evaluated using tournament selection with a size
of 7 for b0 generations with crossover, reproduction
and mutation probabilities set to 85%, 10% and 5%
respectively.

4.1 BEHAVIOR OF MANUALLY
CONSTRUCTED INDIVIDUALS IN
SIMULATION

We constructed several different individuals manually
to see how they perform. We discuss three individu-
als, two manually constructed and one which evolved
in an experiment described below which we extended
manually. This individual uses the front left sensor
and the front right sensor to keep the robot centered
inside a corridor (Fig. 2). The strategy does not
work for thin obstacles if they are approached from
the thin side (Fig. 3). It is an individual with a trivial
structure showing a seemingly complex behavior (see
Braitenberg (1984) for a number of different individu-



turn left if front is blocked

follow right wall

Figure 4: Control architecture for wall following be-
havior (manually constructed).

search for wall

turn left if front is blocked

Figure 5: Control architecture for wall following be-
havior (manually constructed).

als showing complex behaviors which can be realized
with a simple neural control architecture).

The second individual performs wall following behav-
ior (Fig. 4). Provided that the front is not blocked,
the individual uses the front right and back right sen-
sors to follow the right wall. This individual works
fine in the large environment. Unfortunately, it does
not manage to survive in the small environment (Fig.
3). The robot bumps into the door which can be seen
in the upper left. The third individual also performs
wall following behavior (Fig. 5). First, it searches for
a wall. Tt turns left if the front is blocked. Otherwise it
performs wall following in the third layer. It performs
successfully in both environments (Fig. 3).

4.2 EXPERIMENTS USING COMPUTER
SIMULATIONS

Experiments were performed in different environ-
ments. Three fitness cases were used and total fit-
ness was computed as the average over the fitness tri-
als. In one run where we used the raw fitness function
1 — D(1 — R,)? and the large environment, which was
already introduced above, a very successful individual
emerged. We call an individual successful if it sur-
vived 5 minutes of a fitness test. It consists of 131
nodes. The path followed by this individual and the
adjusted fitness values can be seen in Fig. 6. Notice
that the individual keeps on turning to the right and
then to the left and back again. This strategy allows
the individual to avoid the thin obstacles which might
otherwise be almost invisible to the individual.

For the remaining experiments we used the fitness
function 1—D(1—+/R;). A similar fitness function was
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Figure 6: The individual which is shown on the left
evolved with the fitness function 1 — D(1 — R;)3. The
adjusted fitness values are shown on the right.
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Figure 7: Eight successful individuals evolved with 3
fitness cases (left). The best adjusted fitness for the
best individual is shown on the right together with the
average adjusted fitness over all 20 experiments.

previously used by Floreano and Mondada (1994) and
by Mondada and Floreano (1995) to evolve weights for
a neural net based architecture. We tried to model the
environment which was available for the experiments
with the real robot. The environment for the real robot
can be seen in Fig. 1. Due to space limitations in our
lab, the environment is rather small, approximately
1.56m x 6.29m. We experimented with one, two, and
three fitness cases. For each we performed 20 runs.
Only 2 successful individuals evolved when we used 1
6 successful individuals evolved with 2
fitness cases and 8 with 3 fitness cases. Simulation re-
sults are presented for 3 fitness cases. The paths of the
8 successful individuals and the adjusted fitness values
are shown in Fig. 7. A very small individual achieved
the best fitness of all 20 runs: (IFLTE FR FL TL TR).

fitness case.

Next we replicated the experiment with the real robot.
To limit the time needed for the experiment with the
The exper-
iment was performed over a period of 2 months. A

real robot we used only 2 fitness cases.

segment of the corridor in our lab was blocked using
several tubes as a barrier (Fig. 1). The time required
for the evolution was 197 hours. Due to the limited
battery capacity of the robot we had to exchange bat-
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Figure 8: Ten tests of the best individual which was
evolved with the real robot (left). The paths were
recorded using the robot’s odometry. Additional test
(right) where the path was recorded using a standard
camera set to long term exposure and a small light
bulb which was mounted to the top of the robot. The
photograph on the right and the path on the top right
were recorded at the same time.
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Figure 9: Adjusted fitness of the best individual for
each generation for the experiment with the real mo-
bile robot (left). Average survival time of the individ-
uals for every generation (right).

teries periodically. Initially batteries were exchanged
between generations. Later in the run batteries were
also exchanged during fitness testing of a generation.
The evolution was temporarily halted to perform the
exchange.

The best fitness of the run was achieved by an individ-
ual with 457 nodes in generation 45. The individual
is not shown here due to its large size. The individual
was tested in a series of 10 experiments. It managed
to survive 8 of the 10 runs (Fig. 8). Graphs of the ad-
Jjusted fitness values and the average survival time are
shown in Fig. 9. The individuals of the first generation
either bumped very soon into a wall or went around
in tight circles. As evolution proceeded the quality of
the individuals improved. Therefore, more time was
required to complete one generation. Initially, average
survival time of the individuals was 12.9s which rose
to a maximum of 196.7s in generation 40.

Fitness of 75000 Random Individuals
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Figure 10: Scatter plot of 75000 random individuals
(right). The best individual is shown on the left.

4.4 SAMPLING OF RANDOM
INDIVIDUALS

In 50 generations with a population size of 75 a total
number of 3750 individuals are evaluated. The search
range with depths from 2 to 6 was used to initialize the
first generation for all runs using ramped half and half
initialization. We evaluated 3750 random individuals
using ramped half and half initialization with depths
between 2 and 6 and three fitness cases. No successful
individual was found during this random search. Con-
tinuing the search with different random seeds yielding
a total of 75000 random individuals produced the in-
dividual shown in Fig. 10.

5 CONCLUSION

A behavior-based control architecture has been
evolved for a mobile robot using genetic programming.
Experiments have been performed both in computer
simulations and with the real robot. The experiment
with the real robot lasted two months. Due to the
length of the experiment it could only be done once.
However, high speed computer simulations could be
used instead, provided that the results are transferable
to the real world. Our results show that it is indeed
possible to replicate the results achieved in computer
simulations with a real mobile robot, that is Koza’s
classic experiment of evolving a control architecture
can be transfered to the real world.

We used an appropriate representation which made a
replication of the experiment in the real world possible.
Results were reported both for the experiments using
computer simulations and for the experiment with the
real robot. The experiment was carried out with a ser-
vice robot which differs in many respects from other
small sized robots which are usually used in evolution-
ary robotics.
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