
Evolution of a control architecturefor a mobile robotMarc EbnerEberhard-Karls-Universit�at T�ubingen, Wilhelm-Schickard-Institut f�ur InformatikArbeitsbereich Rechnerarchitektur, K�ostlinstra�e 6, 72074 T�ubingen, Germanyebner@informatik.uni-tuebingen.deAbstract. Most work in evolutionary robotics used a neural net ap-proach for control of a mobile robot. Genetic programming has mostlybeen used for computer simulations. We wanted to see if genetic program-ming is capable to evolve a hierarchical control architecture for simplereactive navigation on a large physical mobile robot. First, we evolvedhierarchical control algorithms for a mobile robot using computer simu-lations. Then we repeated one of the experiments with a large physicalmobile robot. The results achieved are summarized in this paper.1 MotivationCurrently mobile robots are usually programmed by hand. For many real-worldapplications this introduces considerable di�culties due to the complexity ofthe task [10]. Instead of programming the robots directly Darwinian evolutionmay be used to automate this process [2]. Thus one would reduce the problemto �nding an appropriate �tness function which describes how well a particu-lar individual solves the task. The di�erent approaches in evolutionary roboticsare described by Nol� et al. [21]. A number of researchers have already evolvedcontrol architectures for mobile robots using computer simulations. Few haveworked with physical mobile robots. Brooks [4] emphasized the importance ofusing physical mobile robots as opposed to computer simulations. To our knowl-edge, those who used physical mobile robots only experimented with miniaturerobots such as the Khepera or a gantry-robot. Most work in evolutionary roboticswas done using neural net control architectures [5, 11, 12, 9, 7, 19, 8, 18]. In con-trast to this work, we wanted to see if genetic programming [13, 15] can be usedto evolve a hierarchical control architecture for a simple reactive navigation taskon a large physical mobile robot. If evolution is carried out on a large physicalmobile robot safety measures have to be taken such that possible damage to theenvironment or to the robot is avoided.As Matari�c and Cli� noted [17], most research in evolutionary robotics fo-cused on the evolution of simple tasks with long evaluation times. Recently, Nol�[20] evolved a garbage collecting behavior for a mobile robot using accurate com-puter simulations of the Khepera and a neural net control architecture which alsoexecuted successfully on the real robot. Evaluation times may be reduced usingcomputer simulations especially if more di�cult tasks are addressed. Thereforeit is also important to see if results from computer simulations can be transferredinto the real-world.



2 BackgroundIn this section we brie
y review related approaches using genetic programmingto evolve control architectures for a mobile robot.Koza [16] used computer simulations to evolve a control program for a gridbased mobile robot to mop an 8�8 area containing obstacles on some of the grids.In a more realistic setting, but also with discrete movements, Koza [14] evolvedsubsumption architectures [3] for wall-following for a mobile robot. Koza's rep-resentation consisted of the terminals S00, ..., S11 which return distance infor-mation from twelve sonar sensors, SS which returns the minimum distance of allsensors, MSD which speci�es the minimum safe distance to the wall, EDG whichspeci�es the desired edging distance and the four terminals for control of therobot. The control terminal (MF) moves the robot 30cm forward, (MB) movesthe robot 40cm backwards, (TR) turns the robot 30� to the right, and (TL)turns the robot 30� to the left. The evaluation was always done from exactlythe same position. As primitive functions Koza used PROGN2 which evaluates itstwo arguments in sequence and the conditional IFLTE. IFLTE is a four argumentfunction. If the �rst argument is less than or equal to the second argument thethird argument is evaluated, otherwise the fourth argument is evaluated.Reynolds [26] used genetic programming to evolve obstacle avoidance behav-ior with a simulated critter. The critter moves with constant forward velocityone half of its body length per simulation step. The primitive function turn isused to specify the amount the critter should turn. In addition to the functionturn the standard arithmetic functions +, -, *, % (protected division), abs, andthe conditional iflte are used. The robot can perceive its environment by usingthe function look-for-obstacle, which returns a measure of the distance to anobstacle in the direction speci�ed by its argument. As terminals he used the setof constants 0, 0.01, 0.1, 0.5 and 2. Reynolds also experimented with noise toevolve more robust controllers [27, 29] and investigated the in
uence the repre-sentation has on the di�culty of the problem [28]. Reynolds experimented with�xed sensors and with sensors that could be pointed dynamically. Using �xedsensors simpli�ed the problem considerably.Nordin and Banzhaf [22, 23, 24] used a miniature mobile robot to evolve alinear control program. Their control algorithms consisted of a variable lengthgenome which represents an assembly program. The programs could use thefollowing arithmetic, logical and shift operations: ADD, SUB, MUL, XOR, OR, AND,and SHL, SHR. Thus their programs are executed linearly one statement after theother. Olmer et al. [25] extended the approach by evolving control algorithms forlower level tasks and a strategy for selection of the di�erent tasks. An overviewabout the research is given by Banzhaf et al. [1].Wilson et al. [30] evolved hierarchical behaviors to locate a goal object in amaze for a mobile robot constructed from Lego Technic bricks. The primitiveoperations were MoveForward, MoveBackward, TurnLeft and TurnRight. Hier-archical structures are produced by chunking simple behaviors after each loopthrough the evolutionary process. This loop included the evolution of behaviorsin simulation and then evaluating successful individuals on the real mobile robot.



In contrast to the work of Koza and Reynolds, we are working with a physicalautonomous mobile robot, a Real World Interface B21. Wilson et al. and Nordinand Banzhaf also used a physical mobile robot. However our representation alsoincludes a conditional statement. Thus a hierarchical structure emerges duringthe evolution. To our knowledge, so far, no one has tried to evolved a hierar-chical control algorithm on a large physical mobile robot using Koza's geneticprogramming.3 RepresentationThe representation used during the experiments described below was determinedby performing a series of experiments in computer simulations. We had to chose arepresentation which could be used with a small population size with a reasonablenumber of generations [6]. Using computer simulations we found a representationsuitable for the evolution of a control architecture during the allotted time.3.1 TerminalsThe terminals are used to provide sensor readings and to control the movementof the robot. All 24 sonar sensors are used to obtain information about theenvironment of the robot. We combined the sensors into blocks of four producingsix virtual sensors as shown in �gure 1. Each of the virtual sensors returns theminimum distance of the four physical sensors. The terminals for the virtualsensors are named: FL, FM, FR, BL, BM, BR.The robot moves with a constant translational velocity of 0:1ms . Three ter-minals are available to the robot to control the direction of movement. Theterminal TL starts a rotation with velocity 40�s to the left, TR starts a rotationwith velocity 40�s to the right, and RHALT stops the rotational movement of the
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Fig. 1. Robot model seen from above with 24 sonar sensors combined to form sixvirtual sensors FL (front left), FM (front middle), FR (front right), BL (back left), BM (backmiddle) and BR (back right) which return the minimum distance of the corresponding4 physical sonar sensors. The radius of the robot together with the minimum safedistance (MSD) and the desired edging distance (EDG) is also shown. The commands TL(turn left), RHALT (halt rotation) and TR (turn right) control the heading of the robot.The robot, a RWI B21, in its environment is shown on the right.



robot. In addition to executing the control command each of these three termi-nals also returns sensor information. The terminal TL returns the average valueof the sensors 11 and 12, RHALT returns the average value of the sensors 12 and13, and TR returns the average value of the sensors 13 and 14.3.2 Primitive functionsAs primitive functions we used the connective function PROGN2 and the condi-tional IFLTE. The function PROGN2 takes two arguments which are evaluated insequence. The value of the last argument is returned. The function IFLTE takesfour arguments. The �rst two arguments are evaluated. If the �rst argument isless than or equal to the second argument, then the third argument is evaluated.Otherwise the fourth argument is evaluated.3.3 Fitness measureIn a small desktop evolution with a miniature mobile robot one may continuethe evaluation of a mobile robot even if the robot hits a wall. The trajectory ofthe robot is simply changed due to the force exerted by the wall. With a largemobile robot such as the B21 this is no longer possible. The robot is capable ofexerting a force which might cause considerable damage if the robot crashes intoan obstacle. The information from the sonar sensors is monitored at all times. Ifan object is reported by the sonar sensors at a distance closer than 40cm fromthe center of the robot the motors are turned o� and the evaluation is aborted.The bumpers of the robot are also monitored in case an object is not perceivedby the sonar sensors. To avoid damage the next translatory movement of therobot has to be done in a direction away from the wall.Therefore, we used a �tness measure which tries to maximize the time therobot survives until it bumps into an obstacle or its allocated time runs out.At the same time the sum of rotations should be kept at a minimum. Aftereach evaluation the robot is repositioned using a repel operation. This operationevaluated the sonar data and the bumpers to move the robot 15cm away fromthe nearest obstacle. By using this operation we try to give all individuals anappropriate chance to survive. It makes no sense to start the evaluation of anindividual if the robot is facing a wall in close distance.Let T be the time available to the robot per �tness case. Let t be the timeuntil the robot bumps into an obstacle. Let rs be the sum of all signed rotationsperformed during the run and let ! be the rotational velocity of the robot. Thenthe raw �tness measure to be minimized is calculated according to: �tnessraw =1n Pni=1 �1�D(1�pRs)	 where n is the number of �tness cases and D = tTand Rs = jrsj!t . Best possible raw �tness of zero is achieved if the robot avoidsobstacles while performing a balanced number of turns to the right and left. Asimilar �tness function was previously used by Floreano and Mondada [7, 19, 8].The adjusted �tness to be maximized is calculated according to �tnessadj =11+�tnessraw . This �tness measure tries to maximize survival time while penalizingunbalanced turning.



4 ExperimentsFirst we performed a number of experiments using computer simulations and anenvironment very similar to the real environment in our lab. The environmentused to evolve the hierarchical control architecture can be seen in �gure 1. Theenvironment we used is rather simple because of space limitations in our lab.Occasionally people had to move through the environment but this did notprevent evolution from making progress. In other computer simulations a largerand more complex environment was used [6].For the simulation experiments we used two di�erent processes. One processsimulates the mobile robot in its environment. The other process evaluates thecontrol structure. Sensor information is sent from the robot process to the evalu-ation process and commands are sent back to the robot process. 20 experimentswere performed with 1,2 and 3 �tness cases. The experiment was run for 50 gen-erations with a population size of 75. Tournament selection with size 7 was usedand the crossover, reproduction and mutation probabilities were set to 85%, 10%and 5% respectively. As maximum time per �tness case we used 300s.In the following text we say that an individual is successful if it follows theenvironment without bumping into a wall. 2 successful individuals evolved with1 �tness case, 6 with 2 �tness cases and 8 with 3 �tness cases. The performanceof the individuals which evolved using 2 �tness cases is shown together with the�tness statistics in �gure 2. In 50 generations with a population size of 75 a totalof 3750 individuals are evaluated. We performed a control experiment with 3750and 75000 random individuals. No successful individual was found among 3750random individuals. The best individual found among 75000 random individualstogether with a plot of the �tness values is shown in �gure 2.
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Fig. 2. 6 successful individuals evolved with 2 �tness cases. Of these the one shownon the top middle achieved an adjusted �tness of 0.9135. Fitness statistics for 2 �tnesscases averaged over 20 runs and for the best run are shown on the left. The individualshown on the top right was the best individual found among 75000 random individuals.The �tness of 75000 random individuals is shown on the right for 3 �tness cases.



Next we performed the experiment using only 2 �tness cases (to limit thetime needed for the evolution) on the physical mobile robot. The experimentwas run for 50 generations. It took 2 months to perform the experiment on thereal mobile robot. Actual time needed for the evolution was 197 hours. Initiallybatteries were exchanged after a generation was completely evaluated. Duringlater generations batteries were also exchanged in between generations (justbefore a new individual was about to be evaluated). While the batteries wereexchanged the evolutionary process was temporarily halted.During this experiment an individual with 457 nodes reached the highest�tness. Due to the large size of the individual it is not shown here. In a series of10 experiments where this individual was �nally tested for 300s it managed tosurvive 8 of the 10 runs. The performance of this individual is shown in �gure3. The path was recorded using the robot's odometry and also with a standardcamera using long term exposure. The average survival time of the individualsand the adjusted �tness of the best individual for each generation is shown in�gure 3.
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Fig. 3. Behavior of the best individual which evolved on the physical mobile robot.The paths were recorded using the robot's odometry. The photo on the left was takenat the same time the last path was recorded. The photo was taken with long termexposure while the robot was moving with a small light bulb mounted on its top.Average survival time of individuals is shown in the graph in the middle. The adjusted�tness (best-of-generation) for each generation is shown on the right.5 ConclusionDue to the length of the experiment we were only able to perform a single runwith the real mobile robot. Although this experiment does not provide enoughdata to calculate reliable statistics, it shows that one is able to evolve a hierar-chical control architecture using genetic programming on a large physical mobilerobot. If evolution is carried out on a large physical mobile robot safety measuresmust be taken to avoid damage to the environment and to the robot. Althoughthe time required for the experiment described here is prohibitive for most prac-tical applications, one is able to use high speed computer simulations insteadprovided that reality is accurately modelled. On our case computer simulationswere used to �nd a suitable representation and the main parameters for the runon the physical mobile robot.
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