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Wilhelm-Schickard-Institut für Informatik

Abt. Cognitive Systems, Sand 1, 72076 Tübingen, Germany
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Abstract

Cognitive brain functions, e.g. sensory perception, motor control and learning, are under-
stood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire
neurons. Cognitive brain functions may occur either consciously, or non-consciously (on
‘auto-pilot’). Conscious cognition is marked by gamma synchrony EEG, mediated largely
by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap
junction-connected neurons define a sub-network within a larger neural network. A theoret-
ical model (the ‘conscious pilot’) suggests that, as gap junctions open and close, a gamma-
synchronized sub-network, or zone moves through the brain as an executive agent, converting
non-conscious ‘auto-pilot’ cognition to consciousness, and enhancing computation by coherent
processing and collective integration. In this study we implemented sideways ‘gap junctions’
in a single layer artificial neural network to perform figure/ground separation. The set of
neurons connected through gap junctions form a reconfigurable resistive grid or sub-network
zone. In the model, out-going spikes are temporally integrated and spatially averaged using
the fixed resistive grid set up by neurons of similar function which are connected through
gap junctions. This spatial average, essentially a feedback signal from the neuron’s output,
determines whether particular gap junctions between neurons will open or close. Neurons
connected through open gap junctions synchronize their output spikes. We have tested our
gap junction-defined sub-network in a one layer neural network on artificial retinal inputs
using real world images. Our system is able to perform figure/ground separation where the
laterally-connected sub-network of neurons represents a perceived object. Even though we
only show results for visual stimuli, our approach should generalize to other modalities. The
system demonstrates a moving sub-network zone of synchrony, within which the contents of
perception are represented and contained. This mobile zone can be viewed as a model of the
neural correlate of consciousness in the brain.

1 Introduction: Cognition and consciousness

Cognitive brain functions including sensory perception and control of behavior are ascribed to
computation in networks of neurons (‘neurocomputation’). In each biological neuron, dendrites
(and the cell body/soma) receive and integrate synaptic inputs to a threshold for axonal firing
as output – ‘integrate-and-fire’. Even though the behavior of an actual biological neuron is quite
complex, in replicating complex behaviors, neurons are frequently modeled as simple integrate-
and-fire neurons. Neuronal firings and their chemical synaptic transmissions are presumed to

1



act like ‘bit states’ in silicon computers. Information flows directionally through landscapes of
integrate-and-fire neurons in feed-forward and feedback networks, accounting for various forms of
brain cognition [12].

What cannot be easily accounted for is consciousness. Subjective phenomenal experience –
conscious awareness – does not naturally ensue from information processing [4]. Without con-
sciousness, non-conscious cognitive processing and behaviors are performed habitually, e.g. on
‘auto-pilot’ [29] or in ‘zombie mode’ [35]. Without addressing consciousness per se, neuroscientists
aim to identify the ‘neural correlate of consciousness’ (NCC), brain systems active concomitantly
with conscious experience [12].

Cognition and consciousness may, or may not, coincide. Complex behaviors like walking or
driving are at times non-conscious auto-pilot functions, and at other times accompanied by con-
scious perception and control. For example, we may drive to work on non-conscious auto-pilot
while daydreaming – our conscious minds roaming elsewhere. But if a horn sounds or a light
flashes, our conscious mind returns to conscious perception and control. Studies of stimulus-
independent thought (‘mind wandering’) show activity literally moving around the brain as the
content of consciousness changes [9].

Measurable brain activity correlating most closely with consciousness (i.e. the NCC) is synchro-
nized electrical activity in a particular frequency band (30 to 90 Hz) of the electroencephalogram
(EEG) called gamma synchrony [24, 51]. EEG signals including gamma synchrony are produced
by membrane potentials reflecting integration in dendrites and cell bodies, i.e. not from axonal
firings. Gamma synchrony can occur locally within a brain region, between neighboring regions,
or globally distributed among spatially separated brain regions.

The mechanism of long range gamma synchrony remains unclear [21]. Melloni et al. [44]
assume long range synchronization of neural assemblies to be the key event mediating access to
consciousness. Different mechanisms which could induce synchronous oscillations are reviewed by
Ritz and Sejnowski [53]. Local gamma synchrony requires something other than directional axonal-
dendritic or axonal-cell body neurocomputation mediated by chemical synapses and axonal firings.
Local gamma synchrony depends on dendrites of neighboring neurons fused and synchronized
by electrical synapses, or gap junctions [15, 16, 30, 2]. In the context of neural networks, gap
junction electrical synapses form lateral, or sideways connections mediating synchrony (‘sideways
synchrony’) in input/integration layers.

As gap junctions open and close, neuronal groups linked laterally by gap junctions – sub-
networks – evolve, and can move as spatiotemporal envelopes, or zones of ‘sideways synchrony’
through the brain’s neuronal networks (as feed-forward and feedback neurocomputation continue).
Such moving zones of sideways synchrony have been proposed as a mobile agent/NCC (the ‘con-
scious pilot’) conveying conscious experience and choice to otherwise non-conscious auto-pilot
cognition [26]. Human electrophysiological studies show zones of synchrony moving through the
brain with changing content of consciousness [49].

2 Neural network modeling

Artificial neural networks are used to address various technical problems, replicating human or
animal behavior or for modeling brain functions. In so doing, the essential ingredients of biological
neuronal function are sought, omitting aspects considered inessential. A simple model capturing
all the necessary ingredients has the advantage that it can be simulated faster compared to a more
elaborate model. In this paper we follow the approach of Gerstner et al. [23] who focus on the
spiking behavior. The molecular interaction, i.e. interactions at the level of neurotransmitters
and ion channels, is not considered. However we do consider connections normally omitted as
inessential: sideways, or lateral inter-neuronal connections due to dendritic-dendritic gap junc-
tions. Using large scale modeling [33] this may eventually lead to a better understanding of how
the brain functions. We start with integrate-and-fire neurons as basic components of artificial
neural networks.

One of the simplest models of how a biological neuron operates is the integrate and fire model
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Figure 1: Three spikes traveling along axon.
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Figure 2: (a) biological neuron. (b) abstract neuron with three neuronal inputs. An abstract
neuron is described by several parameters and state variables, e.g. the activation or the connection
weights. If the activation rises above a threshold, then the neuron sends a voltage spike along the
axon which is then integrated by other neurons through its dendrites.

[22, 34]. In each biological neuron, dendrites (and the cell body/soma) receive and integrate
synaptic inputs from axons of other neurons. Inputs to dendrites and cell body are integrated
over time as a membrane activation potential. When the activation potential reaches a critical
threshold on the proximal axon, the neuron ‘fires’ and sends a traveling wave, or spike (Figure
1) along the length of the axon to the next synapse and hence, the next neuron. The spike is
integrated, along with others from other neurons, by the next neuron. This model is shown in
Figure 2.

In integrate and fire models the change of the membrane potential Vi of a neuron i which is
connected to N other neurons is described as (modified from [62])

C
dVi

dt
= gi(Ei − Vi) + Itonic + Ii +

N
∑

j=1

wijKj (1)

where C is the capacitance of the neuron. The cell tends naturally towards its resting potential
Ei. If Vi is higher than Ei then the term gi(Ei − Vi) ensures that the membrane potential Vi

slowly decays towards Ei. The variable gi specifies leakage conductivity, i.e. the speed with which
this decay occurs. The factor Ii takes into account that the neuron i may receive a constant
current from an arbitrary external source. Finally, the last term

∑N
j=1

wijKj models the incoming
current due to the excitatory potential of the incoming spike Kj on afferent j. Here, wij models
the strength of the connection between neuron i and neuron j. The potential Vi of neuron i rises
(C dVi

dt > 0) if gi(Vi − Ei) > Itonic + Ii +
∑N

j=1
wijKj. Once a threshold voltage of Vthreshold

is exceeded, a spike is generated by the neuron i. The spiking voltage Vs is assumed to rise
exponentially and also to decay exponentially.

Even though Equation 1 is a currently accepted model of how the membrane potential of
neuron i changes over time, it is not a particularly useful description when we want to find out
which function is actually performed by neuron i.
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3 A sideways-connected model of spiking neurons

We will now gradually simplify the equation of the membrane potential in an effort to derive the
function which is computed by neuron i and also extend this equation. First, we note that the
tonic current Itoniccan be subsumed into Ii. Hence we only need to consider cases with Itonic = 0.
The external current can be treated as another input through the afferent j = N+1 with wij = 1.
The capacitance C can also be removed from the equation (it results in the time constant τ = C

gi
)

by subsuming it into the constants gi and the weights wij . Therefore, our simplified equation
describing the membrane potential Vi is given as

dVi

dt
= gi(Ei − Vi) + Ii (2)

with Ii =
∑N

j=1
wijKj . Using Vi(t = 0) = Ei, we obtain

Vi(t) = (Ei +
Ii

gi
)(1− exp(−git)) (3)

as a solution to this equation. The membrane potential rises exponentially and reaches Ei +
Ii
gi

for t → ∞ if the time between spikes is smaller than the time until the neuron has reached its
resting potential. For small t, when Vi ≈ Ei, the membrane potential rises linearly according to
Vi(t) = Ei + Iit.

With respect to the operation of the neuron we will now consider the resting potential to be
zero, i.e. Ei = 0. Thus, we obtain

dVi

dt
= −giVi + Ii (4)

where gi defines the velocity with which the membrane voltage of the neuron returns to the resting
voltage zero and Ii is an external input through the afferent. Let us write the above as an update
equation using a time step of dt = 1. Let V n

i be the new membrane potential at the next time
step which can be computed from the potential at the previous time step V o

i . Then we obtain

V n
i = V o

i − giV
o
i + Ii (5)

V n
i = (1− gi)V

o
i + gi

(

Ii

gi

)

(6)

V n
i = (1− gi)V

o
i + giI

′
i (7)

with I ′ =
(

Ii
gi

)

. This is simply a temporal averaging operation. Suppose that gi = 0.001 then this

equation would simply describe that we maintain a running average of 999 previous parts V o
i and

one part of the current input I ′i. In other words, the main operation of the neuron is to compute
a temporal average of the input I ′i.

So far we have considered only inputs and outputs for a single integrate-and-fire neuron in
a feed-forward network connected by chemical synapses. However neurons also have electrical
synaptic connections mediated by structures called gap junctions [15, 16, 30, 2] which may mediate
gamma synchrony supporting conscious sensations [8, 42, 36].

Gap junctions are pores on membranes of adjacent cells composed of connexin proteins which
electrically synchronize and physically fuse the two cells, forming continuous membranes and cell
interiors. In the brain, gap junctions occur primarily between dendrites of neighboring neurons
and mediate gamma synchrony, the best measurable correlate of consciousness. Gap junctions
enable integration in dendrites of multiple neurons simultaneously, effecting collective integration.
In the context of artificial neural networks, gap junctions are lateral, or sideways connections in
input/integration layers.

We will model gap junctions as resistive coupling between neurons [28, 67]. Two different
functions are assumed to be associated with each gap junction. If a gap junction between two
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neurons exist, then these neurons are resistively coupled. This coupling exists unconditionally.
However, we also assume a conditional coupling through gap junctions in which a particular gap
junction can be in one of two modes. The gap junction can be open (electrically coupled to the
neighboring neuron) or closed (electrically uncoupled from neighboring neuron) [7].

We assume that a neuron has an internal activation potential and an external membrane
potential. Instead of distinguishing between internal activation potential and external membrane
potential, we could also work with a compartmental model, where the two potentials are mapped
to different compartments of the neuron. However, separating between internal and external makes
it easier to visualize how the neuron operates. The internal activation potential (which can be
measured on the inner membrane) is described by Equation 1 or its simplified form Equation 2.
Whenever this activation potential rises above a certain threshold, the neuron fires. A spike is
generated and this spike travels down the axon of the neuron. The external membrane potential
(which can be measured on the outer membrane) is influenced by the out-going spikes and through
the resistive coupling to other neurons. If a gap junction exists between two neurons then a resistor
is assumed to couple the outer membrane potential of these two neurons. The resistor connecting
the outer membranes of two neurons is assumed to connect the two neurons irrespective whether
the gap junction is open or closed. Such neurons form a fixed resistive grid. This resistive grid
receives as input the temporal integration of the out-going spikes. Another resistive grid is assumed
to be formed through open gap junctions. This is basically a reconfigurable resistive grid where
resistors can be inserted or removed from the resistive grid by opening or closing gap junctions.
The reconfigurable resistors are assumed to connect the internal activation potential to neighboring
neurons allowing these neurons to fire in synchrony when gap junctions are open.

Note that in our model synchronous firing is dependent on the input stimulus but it is not
necessarily locked to the input stimulus, i.e. we have a stimulus related synchronization [1].
Sideways gap junction connections induce synchronous firing. This is in line with evidence reported
by Singer and Gray [60]. Our model also only uses local connections between neurons to establish
synchronous firing. No global connections are required. Only a few models have been derived
establishing synchronous firings using only local connections, e.g. [72, 37]. Some models, however,
require a global inhibitor to achieve desynchronization between different objects, e.g. [61]. Schillen
and König [55] use long range excitatory delay connections in a network of non-linear oscillators to
achieve desynchronization. In our model, different firing rates, i.e. desynchronization, is achieved
through the size of the connected sub-networks. No global inhibitor is required. Sub-networks of
different sizes will have different firing rates.

In order to understand the function computed by a grid of resistively coupled neurons, let us
consider the function computed by a resistive grid. In a resistive grid, neighboring points in a
network are connected by resistors. We assume that an external current reaches each point of
the network. Such a resistive grid is shown in Figure 3. Each node of the grid is connected via a
resistor R. An input current is flowing into this resistive grid from below through resistor R0.

Each neuron corresponds to a point in this grid (see Figure 4). The external current Ie,i flowing
into node i, i.e. neuron i, is assumed to be a temporal integration of the output voltage of that
same neuron. The external current has to be equivalent to the current exchanged with nearby
neurons. Let Ic,j be the current exchanged with neuron j. Let neuron i be connected to Nn other
neurons, then we have

Ie,i =

Nn
∑

j

Ic,j . (8)

Let Ve,i be the input voltage and let Vn,i be the voltage at node i, then we obtain

1

R0

(Vc,i − Ve,i) =
1

R

Nn
∑

j

Vc,j −
Nn

R
Vc,i (9)

or

Vc,i =
R0

NnR0 +R

Nn
∑

j

Vc,j +
R

NnR0 +R
Ve,i. (10)
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Figure 3: Resistive grid. Each node point is connected to another node point via a resistor R. An
input current flows into the resistive grid through resistor R0.
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Figure 4: The external current Ie,i flowing into node i has to be equivalent to the current exchanged
with adjacent nodes.

We can rewrite this equation as

Vc,i = (1− αs)
1

Nn

Nn
∑

j

Vc,j + αsVe,i (11)
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Figure 5: (a) input image (size 614 × 410) (b-d) spatially averaged images (b) αs = 0.005 (c)
αs = 0.001 (d) αs = 0.0002

with αs = R
NnR0+R . This operation again describes an averaging operation. First the spatial

average of neighboring neurons is computed and then this average is again averaged, adding a
little from the external potential.

If we assume that we only have a linear sequence of neurons where each neuron is connected
to its nearest neighbor then the solution of this equation is [17, 18]

Vc(x) =

∫

1

2σ
e−|x|/σVe(x)dx (12)

with σ =
√

1−αs

4αs
. Note that we have dropped the index i and refer to both the input voltage

Ve and the voltage Vc of neuron i through the position x of the neuron in the lattice. For a
two-dimensional grid of neurons, parameterized by coordinates x and y, we can approximate the
function computed by each neuron as

Vc(x, y) =

∫ ∫

1

4σ2
e−

|x|+|y|
σ Ve(x, y)dxdy. (13)

Figure 5 shows the result of this operation for different values of αs respectively σ. The input
image is shown in Figure 5(a). Output images for αs = 0.005, αs = 0.001, and αs = 0.0002 are
shown in Figure 5(b-d) where we have assumed that the grid of neurons processing the image has
exactly the same size as the input image, i.e. one neuron per pixel. Each neuron is assumed to be
connected to its nearest neighbor. If αs is very small, i.e. the resistor R is very small compared to
the input resistance R0 then a spatial average with a very large extend is computed. For αs → 0
we obtain

Vc,i =
1

Ns

∑

j

Vc,j (14)

where Ns is the number of neurons in the resistively coupled network, i.e. the network essentially
computes the average of the node voltages for a sufficiently small value of αs.

4 A functional view of neural computation through sideways-

connected spiking neurons

A neuron is said to fire when the activation rises above a certain threshold. The integrate-and-
fire model includes as parameters the strength with which the axon of a neuron is connected
to the dendrites of the following neuron and the threshold. A common learning theory for the
adjustments of the weights is Hebbian learning [27]. According to this theory, the connections
between two neurons increase if both neurons are activated strongly. This allows tuning the
neurons to many types of different stimuli, i.e. the neuron fires strongly if the learned input is
present. In computational data processing, use of a threshold is often a difficult issue. It is difficult
to set the threshold at the right level to extract the relevant data. An adaptive threshold is often
more appropriate and also more robust.

In the context of neural information processing, it is not clear how a suitable threshold is set.
If the threshold is too high then hardly any neurons will fire. If the threshold is too low, then
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almost all neurons will fire all of the time. The threshold has to be within a suitable range for
the neuron to function. The firing threshold for cortical neurons appears to vary spike-to-spike
[46]. We assume that the threshold, which is used to extract relevant information, is determined
by feeding back the output of a neuron. This allows adaptive tuning of the neuron to relevant
information.

Our model actually uses two thresholds [19]. The first threshold is simply the standard thresh-
old voltage. After the activation has reached this threshold voltage, the neuron fires. We will call
this threshold the firing threshold. It can be set to an arbitrary but constant value. The second
threshold which we introduce is the threshold which controls whether the gap junctions are open or
closed. Traub et al. [66] work with a voltage dependent behavior of the gap junctions. They used
physical intuition rather than biological data to model this dependency. However, they do state
that there appears to be a sharp threshold conductance, below which there is no synchronizing
role of the interneuron dendritic gap junctions. In our model, the behavior of the gap junctions is
also voltage dependent. Since the gap junctions control whether the neurons synchronize or not,
we will call this second threshold the sync-threshold.

We assume that the sync-threshold is determined adaptively based on the firing rates of other
neurons with a related function. Neurons with a related function are connected through gap
junctions. The resistively coupling to other neurons enables the neuron to compute a spatial
average of the output of other neurons. The neuron will “know” how active the other neurons
are, and it is therefore able to tune its activity with respect to the firing rate of related neurons.
We argue that the spatial and temporal average of the outgoing spikes of neurons with related
functions is used to set the sync-threshold controlling the gap junctions. This allows the system
to perform figure/ground segmentation.

For figure/ground segmentation, one needs to signal that several neurons actually respond to
the same object, i.e. that they respond to the same stimulus. According to our theory, this is
achieved through gap junctions. We propose that gap junctions open when the temporal average
of a neuron is above the spatial average of its output. In addition, we assume that the firing
threshold of a neuron is influenced by the number of other neurons it is connected to through gap
junctions. In our model, we actually vary the firing threshold based on the size of the connected
network created through open gap junctions. Instead of varying the threshold, it is of course clear
that varying the activation achieves the same result.

We have used a varying threshold in our computational model that we describe in detail
below. For the actual neuron it seems more likely that the firing threshold stays constant but the
activation is increased (possibly by ions entering the neuron at positions where open gap junctions
are located). Let Ns be the number of neurons responding to a certain stimulus. Then the firing
threshold of each neuron responding to this stimulus is assumed to be reduced by γNs. As a
result, neurons which respond to large objects will fire with a higher frequency and hence, the
output will be treated as more relevant in further processing. This is in line with analyses of the
behavior of biological neurons that stimulus-related information is encoded into the precise timing
of spikes [68].

Our neuron model which also includes the function of gap junctions is illustrated in Figure 6.
The full description of this model is given in Figure 8 below. But first, let us briefly describe the
individual components of the model so that we get an overview. The comments in brackets refers
to the illustration shown in Figure 6.

• Each neuron computes the temporal average of the incoming spikes through the afferent
(
∫

dt-box).

• It fires if the temporal integral of the incoming spikes is larger than the firing threshold
(threshold-box).

• Each neuron is part of two resistive grids (formed through light and dark lateral connections).

• A fixed resistive grid is formed by neurons connected through gap junctions (light lateral
connections).
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Figure 6: Artificial neuron with lateral connections (gap junctions). The operation of this model
is fully specified by the algorithm given in Figure 8.

• A reconfigurable resistive grid or sub-network is formed by neurons connected through open
gap junctions (dark lateral connections).

• Out-going spikes are temporally integrated and spatially averaged using the fixed resistive
grid (upper

∫

dt-box and light lateral connections).

• This spatial average, essentially a feedback signal from the neuron’s output, determines the
sync-threshold of the neuron.

• Gap junctions to neighboring neurons open if the temporal average is larger than the spatial
average otherwise they close, forming a reconfigurable resistive grid. A resistor exists in this
grid for every open gap junction (sphere on dark lateral connection).

• Open gap junctions allow the neurons of a sub-network to synchronize (synchronization
occurs through spatial integration

∫

dx-box).

• The firing threshold of each neuron is reduced based on the size of the sub-network to which
the neuron belongs.

Making the sync-threshold dependent on the spatial average of the output, causes the threshold
to move with the signal and allows for figure/ground separation.

Even though, in our model, all of the above functions are integrated into one neuron, it could
actually be that some of the functions are spread over several different types of neurons within a
cortical column. For a review of the columnar organization of the neocortex see Mountcastle [45].

With this basic description of the function of a neuron, we are able to build a highly successful
figure/ground separator or rather object detector. We will show this on some sample visual input.

5 A detailed example

Suppose that our model is used in the context of visual figure/ground segmentation. We start
with an initial layer of neurons (the visual receptors). For our implementation, we only consider
cones. The cones respond to light predominantly in the red, green and blue parts of the spectrum
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Figure 7: A set of neurons receives visual input from a virtual retina. Each neuron (sphere) has
its own receptive field (transparent cone) and is resistively coupled to other neighboring neurons
(connections between spheres). Only 7 neurons of a much larger set are shown. Axons are not
shown.

[13]. Thus, for color image processing, we start off with a three-dimensional coordinate system.
The coordinate axes are the responses of the cones in the red, green and blue part of the spectrum.

By the time the visual stimulus has reached the visual cortex, i.e. V1, a change of coordinate
system has occurred. The main axes are no longer red, green and blue but dark-bright, red-green,
and yellow-blue [65]. This transformation is due to so called color opponent and double-opponent
cells. Mathematically, the transformation is simply a rotation of the coordinate system [41]. For
our simple example, we are only going to use the dark-bright channel. In order to simulate this
channel, we compute the lightness [50] of the input stimulus for every pixel of the virtual retina.
Let R, G, B be the non-linear intensities stored in a computer image representing the responses
of the red, green, and blue cones, then the lightness L is given as

L = 0.299 · R+ 0.587 ·G+ 0.114 · B. (15)

We simulate a three-dimensional sheet of 1000 neurons which simulate the processing done by
some, as of now, unspecific area of the visual cortex. The processing we describe could take place
in V1. However, it seems that humans are not aware of the processing occurring in V1 [11]. The
processing is more likely to take place in some higher visual area in particular if higher features
such as form or motion are used.

In our simulation, each neuron has a random position inside a volume of size N = 100×100×10
units. Each neuron receives its input from three neurons of the virtual retina. The size of the
retina is 614×410 pixels. The non-uniform distribution of the retinal receptors is not modeled. In
the brain, the non-uniform distribution creates a complex-logarithmic mapping from the retinal
receptors to the neurons of V1 [56, 57]. However, we are only concerned with the behavior of
laterally connected neurons. The distribution is not relevant in this context. Thus, we simulate
the receptive field as shown in Figure 7. Each neuron is laterally connected to its 6 nearest
neighbors. The position where the neuron receives its input from is determined randomly by first
mapping the position of the neuron to the virtual retina and then varying the position slightly
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Table 1: State variables of neuron i.
Variable Physical Correlate Description

oi Vs output voltage sent along axon
ai Vi activation of neuron
ti Vthreshold firing threshold voltage
ãi Ve,i temporal average of out-going spikes
āi Vc,i spatial average of temporal average

(1) oi := (1 − αo)oi // output decay
(2) ai := (1− αa)ai // activation decay
(3) ai := ai + αa

∑

j wijoj // sum over all inputs

(4) // average activation across open gap
(5) // junctions (reconfigurable resistive grid)
(6) ai := avg({ai} ∪ {aj|Neuron j is connected to
(7) non-refracting neuron i via open gap junction;
(8) aj is then set to average ai })
(9) ai := max[−1, ai] // limit activation
(10) // reduce threshold based on size of sub-network
(11) ti := max[0, 1− γ ·Ns]
(12) if (ai > ti) {// neuron fires if above firing threshold
(13) ai = 0 // activation is reduced to 0
(14) oi = 1−Nnǫ // output rises to 1
(15) // some activation is distributed to conn. neurons
(16) if (j is connected to i via open gap junction)
(17) aj := aj + ǫ

(18) }
(19) // temporal averaging of own output
(20) ãi = (1− αt)ãi + αtoi
(21) // spatial averaging of temporal average

(22) ā′i =
1

1+Nn

(

āi +
∑

j āj

)

(23) āi = (1− αs)ā
′
i + αsãi

(24) // check if temporal average is above sync-threshold
(25) if (ãi > āi)
(26) open gap junctions
(27) else
(28) close gap junctions

Figure 8: Algorithm which updates the state variables of neuron i from one time step to the next.

(by one pixel to the left or right or up or down). The input we use is equal to the lightness of
the pixel at that point of the retina. We do not simulate the spiking behavior of the retina as
the first processing stage of the simulated sheet of neuron performs a temporal averaging anyway.
The input may as well be simulated as a spiking input.

Each neuron is described by a set of state variables (shown in Table 1). The output o of a
neuron is assumed to have the operating range of [0, 1] and the activation a of a neuron is assumed
to have the operating range of [−1, 1]. The algorithm describing how these state variables change
over time is shown in Figure 8. In our simulation on a sequential computer, all of the neurons
are updated sequentially. Note, that the neurons are randomly distributed. Hence, the update is
analogous to a random update on a grid array of neurons. The entire system takes approximately
1250 iterations before convergence to normal operating range using the parameters given in Figure
2.
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Figure 9: Figure/ground separation using our model. A sheet of neurons (nodes) receives input
from a virtual retina (image in background). Gap junctions (connections between nodes) open if
the temporal output of a neuron is above the spatial average.

Figure 9 shows how our sheet of neurons responds to different visual input stimuli. The input
stimuli is shown in the background. Each node represents a neuron. The gap junctions open if the
temporal average output is above the spatial average of the output of all neurons. Gap junctions
are shown as connections between nodes. Only open gap junctions are shown in Figure 9(a-i). The
color of the neuron is drawn proportional to the temporal average of the neuron’s output. The
gap junctions of each inter-connected sub-network is drawn with a different color. The color is
randomly assigned but stays with a connected sub-network. The figure which has been separated
from the ground can be clearly distinguished.

Since open gap junctions connect adjacent neurons resistively, these sub-networks synchronize
their firing rates in the same way that electrical circuits synchronize which are coupled resistively.
It is almost certain that biological neurons are not all identical. They could even fire in a chaotic
way. From the literature on electrical circuits, it is well known that chaotic circuits can be
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Figure 10: Figure/ground separation over several images from a larger image sequence. Every
100th image is shown. Even though a different set of neurons responds to the visual input, it is
still the same connected sub-network as indicated by the color of the sub-network.

synchronized if a signal is sent from one circuit to the next [48, 3]. Also, identical non-linear
electrical circuits have been shown to synchronize via bidirectional and unidirectional resistors
[69]. Zhao and Breve [76] have shown that chaotic oscillators, in particular Wilson-Cowan neural
oscillators [74], can be used for scene segmentation. In Zhao and Breve’s setup, neurons responding
to the same object synchronize whereas neurons representing other objects are in another chaotic
orbit, i.e. their response is not regular. In contrast to their work, we do not work with chaotic
oscillators. Zhao and Breve only used static input. They did not experiment with moving stimuli
where neurons have to continuously synchronize to the same object. Eckhorn et al. [20] also
established synchrony in a moving input but worked with two one-dimensional layers of neurons.
Their approach uses long range lateral connections between neurons.

Figure 10 shows that our method is able to follow the object over successive images of a moving
stimuli. Even though a different set of neurons responds to this stimuli, it is still the same sub-
network which is indicated by the color of the sub-network. The firing frequency will allow to
identify this extracted stimuli as being the same object. With this information, the next stage
of neurons is then able to compute the center of mass of this particular information, e.g. using a
hierarchy of neural layers as shown in Figure 11. This information in turn can then be used for
tasks such as visual servoing [5, 6].

Rodemann [54] has shown that such gamma oscillations can be used as a temporal reference
signal and also as a global processing switch. When gamma oscillations are used as a reference
signal, neural processing can be changed from a rate encoding to a latency encoding allowing for
faster information processing. With latency encoding, only the first spike and its exact timing
within the cycle is relevant.

We now further investigate the synchronizing behavior of our neural sheet of neurons using
synthetic input. Figure 12 shows how a set of neurons synchronize for an arbitrary random input
and γ = 0.001. For this experiment, we deliberately open the gap junctions of all neurons which
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Figure 11: Hierarchy of neuron layers processing visual information at different scale levels.

lie inside a circular area from the center of the sheet of neurons. In other words, all neurons inside
the center area are resistively coupled to neighboring neurons whereas the remaining neurons are
not resistively coupled to neighboring neurons. The input stimulus is defined as follows. At each
time step, each input pixel is completely chosen at random from the range [0, 1]. Thus, the input
stimulus is just a sequence of random images without any kind of structure. The layer of neurons
overlayed on a single input image is shown in Figure 12(a).

From the layer of neurons, three arbitrary neurons are selected from the center area and three
arbitrary neurons are selected from the remaining neurons. The selected neurons are highlighted
in Figure 12(a). Figure 12(b-d) show the output of the three neurons from the center area. Figure
12(e-g) show the output of the three neurons from the outside area. All neurons which are located
inside the center area of the visual layer fire in synchrony. These neurons synchronize because they
have their gap junctions open. The neurons which are located in the area outside of the circular
area fire out of sync. The incoming random stimulus is summed up until the firing threshold
is reached. For some neurons, the threshold will be reached soon whereas for others the firing
threshold will be reached later. In the center area, the neurons are resistively coupled. Thus, the
activation of all resistively coupled neurons will equalize to the same level (due to Figure 8(6-8)).

Note that our model is in line with experimental results obtained by Lamme and Spekreijse
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Figure 12: (a) random input stimulus and small circular set of neurons with open gap junctions.
(b-d) firing behavior of three neurons from inside the circular area. (e-f) firing behavior of three
neurons outside of the circular area.

[40]. They investigated whether neurons in V1 fire in synchrony depending on the position of their
receptive field relative to the stimulus. They found that neurons tend to fire in synchrony if both
of their receptive fields are located on either the object or on the background but not if one of the
neuron’s receptive field is located above the object and the other one over the background. Lamme
and Spekreijse attribute this behavior to horizontal connections within V1. Apparently, whether
or not the neurons of V1 synchronize depends on the type of stimulus used (and probably also
on which neurons of V1 are checked for synchronous firing). There appears to be no synchronous
firing behavior for a motion induced stimulus. This points to the use of higher visual areas, e.g.
V5 for figure/ground segmentation with respect to motion.

We will now illustrate the effect of line (11) of the update algorithm (Figure 8) on the processing
performed by the neurons. The firing threshold is reduced depending on the size of the sub-
network, because of γ = 0.001. If many neurons are resistively coupled through open gap junctions,
then their firing threshold will be lowered leading to a higher firing frequency. If just a few neurons
are resistively coupled, then they will fire with a slower frequency. This effect is illustrated when
comparing between Figure 12 and Figure 13. For the small circular area shown in Figure 12, the
firing frequency of neurons (b-d) is lower compared to the firing frequency of neurons (b-d) for
the larger area shown in Figure 13.

Table 2 shows the parameters which we have used for these experiments. The parameters
αo and αa describing the decay of the output spiking voltage Vs and the decay of the neuron’s
activation potential Vi of course depend on the time scale of the simulation. Similarly, the factor αt

for the temporal averaging of the neuron’s output also depends on the time scale of the simulation.
The parameter αs which determines the extent of the spatial averaging should be reasonably small.
This parameter depends on the total number of neurons N simulated in the sheet of neurons. The
more neurons there are, the smaller this parameter has to be in order to compute an almost
global average of the temporal average. The parameter ǫ determines how much from the built up
voltage carries over to adjacent neurons. This parameter is most likely very small as most of the
current leaves the neuron through the axon. However, part of this current also reaches neighboring
neurons. If those neurons have almost reached their threshold then this current will make sure
that these neurons also fire at approximately the same time.
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Figure 13: (a) random input stimulus and large circular set of neurons with open gap junctions.
(b-d) firing behavior of three neurons from inside the circular area. (e-f) firing behavior of three
neurons outside of the circular area.

Table 2: Parameters used for the simulation.
Param. Description Value

αo decay of the output spiking voltage 0.5
αa decay of the neuron’s activation potential 0.01
αt temporal averaging factor 0.01
αs spatial averaging factor 0.0001
ǫ activation leakage to adjacent neuron upon firing 0.001
γ factor influencing reduction of firing threshold 0.0
wij weight between neurons i and j 1
oj output of retinal neuron L(x, y)

The factor γ which is used to reduce the firing threshold of a neuron is of course based on
the maximum number of neurons which can belong to a connected set of neurons. Let there be
N neurons in the simulated sheet then this parameter should be smaller than 2

N . The maximum

size of a sub-network is N
2
. For such a maximum size sub-network, the firing threshold would be

reduced to 0 if γ = 2

N , i.e. all neurons of the sub-network would fire all of the time. On the other
hand, if γ is too small, then the reduction of the firing threshold would hardly make a difference
and, hence, it would not be possible to distinguish between smaller or larger stimuli by higher
neural areas. Our virtual retina, i.e. the input images that we used, had size 614 × 410 pixels.
The weights wij are set to unity. Each neuron receives its stimulus from the artificial retina as
described above with a slight random offset. Due to the unit weights and this offset, the input is a
down-sampled version of the original retina. The resulting synchronous firing frequency of course
depends on the choice of the given parameters and the simulation time constant. By varying the
time constant of the simulation step, the firing frequency can be brought into agreement with a
given firing frequency. Also, note that the so called gamma synchrony does not correspond to a
single frequency but to a range of frequencies. Our model also shows this behavior in that several
different frequencies can be obtained as output.
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Figure 14: Our model is also able to work with more complex feature vectors. Instead of using
only the lightness of the visual stimuli, one could also use color, texture, motion or disparity. Also,
the input does not have to be visual input. It could be any kind of input, e.g. auditory input.

6 Processing of arbitrary features in the cortex

For our simulations we have used a retinotopic mapping between the neurons processing the visual
input and the virtual retina. It is well known that the primary visual cortex is highly structured
[43]. It is of course clear, that the operation which we just described also works with non-retinotopic
maps. The only requirement for the method described to work is that we interconnect neurons
of related function resistively such that the spatial average can be computed and in turn the
sync-threshold can be set.

Even though we have shown how our model processes a very simple visual input (the lightness
of the stimulus), the method is able to classify any arbitrary feature vector. If visual stimuli is
processed, the component features could as well be color, texture, motion, or depth (derived from
disparity) as shown in Figure 14.

Suppose that one wants to segment a moving stimuli from a background motion. Let us assume
that the moving object creates a different motion vector compared to the background. Then it
would be sufficient to extract this object by substituting the lightness input (Equation 15) with a
motion detector.

Suppose that two different stimuli are presented to our layer of neurons, e.g. two objects which
move through space. Then the lightness input would be substituted by a motion detector and
a texture detector tuned to the object. Neurons corresponding to the object covering a larger
retinal area would fire with a higher firing frequency. Neurons which correspond to the smaller
object would have a lower firing frequency. Using a hierarchy of frequency detecting neurons [32],
we could locate the position of the object relative to the visual field. This information could then
be used for actions such as grasping behavior through visual servo control [5, 6].

7 Discussion

Kouider [38] reviews current neurobiological theories for consciousness. Unfortunately, these the-
ories are not constructive in a way that would allow engineers to build a conscious machine or
artifact. We review a few of these theories, and show how they relate to our model.

Tononi and Edelman [64] put forward the dynamic core hypothesis in which information is
transmitted through recurrent reentry connections along an ascending thalamo-cortical axis of
arousal. Local groups of neurons perform specialized and discriminatory functions regulating
reentry and feedback. Particular core feedback loops are presumed to correspond with partic-
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ular conscious mental states. Cortical feedback between different visual areas is important for
figure/ground separation [31], and, according to Grossberg [25], visual form perception.

But the dynamic core can’t account for gamma synchrony EEG, the best marker of con-
sciousness, nor deal with non arousal-based consciousness, i.e. internally generated states like
daydreaming, mind-wandering, memory, and meditation, mediated through ‘default-mode’ net-
works [9]. Thalamic core activity could be essentially non-conscious, unless enveloped within
a synchronized zone, conferring (by an as-yet-unknown mechanism) conscious awareness of its
content [26].

In the present paper we consider just local zones of gap junction-mediated synchrony, able to
move through neuronal network lateral connections. Such local zones could, for example, regulate
reentry and feedback in the dynamic core. We did not consider long-range gap junction connections
which may occur via inter-neurons, glia and axonal gap junctions, coalescing mobile zones into
synchronized global webs.

According to Tononi’s Information Integration Theory [63] consciousness depends exclusively
on the ability to integrate information, to reduce uncertainty. The quality of consciousness is
determined by complexity of relationships among informational elements. His theory also sug-
gests an ability to measure and correlate consciousness with the brain’s electrical complexity. In
integrate-and-fire neurons, integration occurs exclusively in dendrites and cell body, axon firing be-
ing the output signal. But Tononi integration occurs in intra-cortical pathways over large regions
of cortex, and thus linear series of individual integrate-and-fire neurons. In our model, integration-
performing dendrites and cell bodies are synchronized and unified by gap junctions into lateral
webs, enabling, we propose, faster and more efficient ’collective integration’ by massive parallel
processing of synaptic inputs from among many thousands of neurons, with more finely-tuned,
and coordinated firing outputs.

Dehaene and Naccache [14] have developed the global neuronal workspace theory. It assumes
that different modular areas, including prefrontal and anterior cortex, are connected through long
range axons into a “global workspace”, within which consciousness can occur in a further subset
of neuronal activities. Our mobile zone of synchrony defined by lateral gap junction could easily
move through the global workspace, conferring consciousness wherever it goes.

Lamme [39] has put forward the Local Recurrence Theory, a hierarchy of three types of neural
processes, (1) a feed-forward sweep, (2) localized recurrent processing and (3) widespread recurrent
processing with global interactions. All seem conducive to gap junction-mediated mobile zones
and more extended global webs.

The Microconsciousness Theory of Zeki [75] suggests that particular qualities of a perception
become conscious in separated brain areas, with multiple micro-consciousnesses distributed across
processing sites. Attributes such as color, form and motion each arise in one particular microcon-
sciousness region, but are somehow bound together to give rise to a unified conscious percept. Our
model of a mobile zone of synchrony is a direct correlate of microconsciousness. Zeki doesn’t ex-
plain how the microconsciousnesses are bound together. They may need long range gap junctions
(inter-neurons, glia, axons) and brain-wide mobile zones/global webs for binding.

Binding is an essential question. How does the brain integrate sensory inputs, binding together
individual features from different cortical areas into unified, conscious percepts? If individual
neurons were tuned to specific stimuli, many highly specialized cells would be required which
would only fire rarely, since relevant stimuli only appear on occasion. As a solution to this
problem, von der Malsburg [70] proposed the ‘correlation theory’, in which synchronous electrical
activity among disparate cell groups bind together and integrate their component features into a
unified conscious perception. According to this theory, relations between active cells leading to
synchrony are established by synaptic modulation and feedback loops. Wang et al. [73] showed
how a feedback loop between groups of excitatory and inhibitory neurons can be used for pattern
segmentation in associative memory. Gerstner et al. [23] and Ritz et al. [52] showed how such
feedback loops can establish collective oscillations. Using this architecture, von der Malsburg
and Buhmann [71] presented a computational model of a cortical circuit consisting of an array of
synchronized units that act as feature detectors.

Synchrony in the gamma EEG range of 30 to 90 Hz, correlating with conscious perceptions
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and actions, was discovered and established in the 1980s, e.g. Singer [59] gives an extensive
overview on brain gamma synchrony correlating with perception and motor control. Palva et al.
[47] showed robust cross-frequency (alpha, beta and gamma oscillation) phase synchrony exists in
human cortex, with synchrony enhanced during cognitive tasks such as arithmetic.

However several influential papers discounted synchrony as a solution to binding or conscious-
ness, based on a misunderstanding. Von der Malsburg had implied axonal firings, or spikes, as
the synchronized activity, and neuroscientists and cognitive scientists routinely view firings or
spikes as the currency of cognition in the brain. However gamma synchrony EEG correlating with
consciousness measures local field potentials, closely related to dendritic and cell body membrane
potentials rather than axonal firings.

In a famous 1990 paper, Crick and Koch [10] argued that consciousness depends on neurons
that bind together by synchronizing their spikes in 40 Hz oscillations. However 5 years later, as
evidence for synchronized spikes failed to materialize (and despite continuing evidence for gamma
synchrony EEG, i.e. dendritic synchrony as a neural correlate of consciousness) Crick and Koch
[11] recanted their support for synchrony as an essential aspect of brain activity related to con-
sciousness. Shadlen and Movshon [58] concluded there is insufficient evidence for the temporal
binding hypothesis based on synchronized axonal firings. Forced to choose between dendritic
synchrony (for which evidence existed) and axonal firings as the correlate of consciousness, au-
thorities chose axonal firings, presumably because of their direct applicability to neuronal network
computation.

But integration, which Tononi tells us is the key function relating to consciousness, occurs
in post-synaptic dendrites and cell bodies. Gamma synchrony EEG originates in post-synaptic
dendrites and cell bodies. Gap junction-connected mobile zones of dendritic synchrony performing
collective integration are prime candidates for the neural correlate of consciousness.

Crick and Koch [10] and Shadlen and Movshon [58] both also questioned whether synchro-
nized oscillations could solve the figure/ground problem. In this paper we present an algorithmic
solution to the figure/ground problem based on dendritic synchrony. Specifically, we demonstrate
a spatiotemporal envelope of sideways synchrony moving through a single layer artificial neural
network viewing and perceiving a visual scene. Topology of the envelope, and activity within it
convey information, not the synchrony per se. Neurons of related function, connected through
gap junctions, synchronize and coherently respond to an input stimulus. This is in line with evi-
dence summarized by Singer and Gray [60], i.e. that correlations tend to occur between cells with
similarities in orientation preferences, ocular dominances, and color selectivities.

Singer and Gray, as well as Crick and Koch, Shadlen and Movshon, Tononi, Edelman, Lamme
based their models on axonal-dendritic synapses, with synchrony and long range correlations due
to axonal firing/synaptic feedback loops along sensory arousal pathways. Generally, they all
accommodate non-conscious cognitive processes and behaviors, but fail to offer a distinction for
consciousness.

The importance of gap junctions in the brain, and in particular in relation to gamma synchrony,
was not then appreciated. Our model of a gap junction-mediated mobile sub-network, zone, or
envelope of dendritic synchrony moving through input/integration layers of neuronal synaptic
networks is compatible with, and supplementary to all these models, capable of adding to them a
distinguishing mechanism for consciousness.

8 Conclusion

Cognitive brain functions are understood as computation in synaptic networks of integrate-and-fire
neurons. Each neuron has multiple dendrites and a cell body which integrate synaptic inputs to a
threshold triggering axonal firings, or spikes. With feedback and synaptic modifications, networks
of such neurons learn, adapt and compute, able to account for cognitive functions. Axonal firings,
or spikes, and chemical synaptic transmissions are considered the primary currency of cognitive
information processing in the brain’s neuronal networks. But a basis for consciousness in the brain
remains elusive, as does executive agency in artificial systems based on neuronal networks.
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At the same time, another type of synaptic network occurs among brain neurons. Gap junc-
tions (electrical synapses) fuse adjacent cells, synchronize their membranes and connect their cy-
toplasms, essentially forming sub-networks which are one complex cell, syncytium, ‘hyper-neuron’
or dendritic web. Gap junction-connected sub-networks among cortical inter-neurons mediate
gamma synchrony EEG, the best measurable correlate of consciousness. Gap junctions between
dendrites form lateral, or sideways envelopes, or layers in neuronal networks. As gap junctions
open and close, zones or webs of gap junction-connected neurons and glia can literally move
around the brain, as an envelope of synchronized collective integration, perhaps able to confer
conscious awareness upon its contents [26]. If consciousness moves as a self-organizing system
through the brain’s neuronal networks, perhaps a comparable function could be engineered into
artificial systems. In this paper we applied the concept to an artificial neural network.

We extend the standard integrate-and-fire neuronal model in an artificial system to include
‘sideways synchrony’ induced by lateral connections in input/integration layers. In distinguishing
‘figure’ from ‘ground’ in visual signals, neurons extract essential features from an input stimulus.
In our computational model, we introduce lateral processing through gap junctions which couple
neurons of similar function. Each neuron temporally integrates its own inputs to a threshold which,
when met, results in its own output spike. The generated output spikes are used as a feedback
signal for the same neuron. This feedback signal is then averaged over gap junction-connected
neighboring neurons, regardless of whether the gap junctions are open or closed. Neurons with
a firing frequency above the spatial average open their gap junctions with neighboring neurons,
causing these coupled neurons to synchronize, providing coherent processing from one time step to
the next. Opening and closing of gap junctions enables the sub-network of gap junction-connected
cells to literally move through the larger network.

Due to coherent processing and collective integration, the sub-network of synchronized neu-
rons may be more efficient. In the brain, according to our view, gap junction-defined synchronized
zones correlate with conscious perception and control, converting non-conscious cognition to con-
sciousness. In artificial systems, a synchronized zone can act as a mobile executive, a causal agent.
This study demonstrates the potential utility of a mobile synchronized zone in feature detection
and visual perception. Our mobile zone of synchrony is a candidate for 1) the neural correlate of
consciousness in the brain, and 2) an executive causal agent in artificial systems.
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