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Abstract

According to the Red Queen hypothesis a population of individuals may be improving some
trait even though fitness remains constant. We have tested this hypothesis using a population
of virtual plants. The plants have to compete with each other for virtual sunlight. Plants are
modeled using Lindenmayer systems and rendered with OpenGL. Reproductive success of a
plant depends on the amount of virtual light received as well as on the structural complexity
of the plant. We experiment with two different modes of evaluation. In one experiment, plants
are evaluated in isolation, while in other experiments plants are evaluated using coevolution.
When using coevolution plants have to compete with each other for sunlight inside the same
environment. Coevolution produces much thinner and taller plants in comparison to bush-
like plants which are obtained when plants are evaluated in isolation. The presence of other
individuals leads to an evolutionary arms race. Because plants are evaluated inside the same
environment, the leaves of one plant may be shadowed by other plants. In an attempt to
gain more sunlight, plants grow higher and higher. The Red Queen effect was observed when
individuals of a single population were coevolving.
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1 Motivation

One of the main issues of artificial life research is, how to create an environment of continued
open ended evolution. Quite often, however, evolution stagnates after some time. For instance,
in the field of self reproducing programs, one would think that inoculating the environment with
a single self reproducing program would lead to continued open ended evolution. Ray’s Tierra
system is probably the most well known system of this line of research [41, 40, 42]. Ray created an
environment where computer programs have to compete for CPU cycles. In his experiments, he
found that over time, the self reproducing programs became shorter than his handwritten program
and an entire ecosystem of virtual organisms emerged. We also experimented with self reproducing
programs [10] and found that if the experiments are carried out for a large number of generations,
in the end, evolution comes to a halt. In our view, the difficulty with this line of research is,
how to get the programs to acquire new capabilities. How can we create such a scenario? In this
respect, the study of arms races may lead to new insights on how to create true continued open
ended evolution. It is also of interest to find a set of minimal requirements for an arms race to
occur [13].

A classic example of an arms race is the coevolution of predator and prey populations such
as cheetahs and gazelles. Cheetahs hunt for gazelles while gazelles try to escape from cheetahs
on the hunt. If some offspring of the cheetah population is able to run a little faster than other
cheetahs, it will be able to catch more gazelles than his competitors. Thus, this trait will probably
be reproduced into the next generation. On the other hand, the population of gazelles will become
smaller due to the running abilities of the cheetahs. Only those gazelles will survive, which are able
to run at least as fast as the cheetahs. At this point, both populations have reached the status
quo. Both populations have become faster in the course of time. However, both populations
produce the same number of offspring as before. Thus, their fitness has not changed. In this
case, both populations have been improving some specific trait (running abilities) even though
fitness remained constant. This has been termed the Red Queen hypothesis [50, 45] after the
Red Queen chess figure described by Lewis Carroll in “Through the Looking Glass”. The Red
Queen noted that one had to do all the running one could do just to stay in the same place. Such
pursuit evasion strategies have been evolved in simulation by a number of different researchers
using representations such as recurrent networks [3, 4, 15, 32, 35] or genetic programming [27, 44].
Floreano et al. [16] also evolved pursuit evasion strategies for two Khepera robots using recurrent
networks.

The Red Queen effect is usually used in the context of two separate populations such as
predator and prey. We have visualized the Red Queen effect in a single population of artificial
plants [12, 11]. The simulated plants constitute a simple form of ecosystem. According to Ray
[43], ecological interactions are an important driving force for evolution. If the environment is
sufficiently rich, i.e. the living organisms predominate, then the evolutionary process is primarily
concerned with the evolution of adaptations to an ever changing environment. In the experiments
which are described below, we will see that the Red Queen effect influences the shape of the plants.
Plants grow higher and higher in an attempt to gain more sunlight. Maximum fitness fluctuates
around a constant level and sometimes even decreases.

Plants are usually represented as Lindenmayer systems or L-systems for short [39]. Prusin-
kiewicz and Lindenmayer [39] have created a large variety of complex, photo-realistically looking
plants from a relatively small number of rules. Methods for realistic modeling and rendering of
plant ecosystems are also described by Deussen et al. [9]. We use an evolutionary algorithm, a
variant of genetic programming [27, 29] to automatically generate new generations of plants. One
of the first experiments in this area was done by Niklas [34]. Niklas performed an adaptive walk
through the space of branching patterns. An experiment in which different branching patterns
compete against each other was also made. Koza [28] used genetic programming to discover the
rules of an L-system. The method was demonstrated on the evolution of an L-system which
generates a Koch curve. McCormack [31] developed an interactive system to evolve parametric
L-systems for computer graphics modeling. Other early experiments were done by Jacob [18, 19,
20, 21, 22] who also used a variant of genetic programming to evolve context-free and context-



sensitive L-systems which look like plants. Jacob used a combination of the number of blossoms,
the number of leaves and the volume of the plant as a fitness function. He also experimented
with an ecosystem of different coevolving plant species [22]. Broughton et al. [2] evolved three-
dimensional objects similar to Dawkins’ Biomorphs [8]. They experimented with two different
paradigms, genetic programming and L-systems both of which, when interpreted define a three-
dimensional object. Coates et al. [5] extended the experiments and evolved shapes which are
adapted to specific constraints, i.e. are able to catch or avoid particles moving in a specific
direction. Coevolution was used to evolve objects with an enclosure. Ochoa [36] evolved two-
dimensional plant morphologies using L-systems. Kokai et al. [25, 26] evolved L-systems which
describe fractal images or structures. They tried to generate rules which, when executed and
viewed, look identical to a given image. Mock [33] evolved plants for an artificial world where the
user took the role of a virtual gardener who could select plants for reproduction. He also used
an explicit fitness function that rewarded plants which are short but wide. Kim [24] developed
a model for the evolution of plant morphology. Plants were grown on a two-dimensional lattice.
Hornby and Pollack [17] used L-systems to evolve tables and investigated the impact the choice
of representation has on the result. Representing the individuals as L-systems produced better
results in comparison to a direct encoding.

Most previous work on artificial plant evolution does not allow interactions between the plant
and its environment. The plants in our environment need to catch virtual sunlight through their
leaves. They also interact with other individuals from the same population. To estimate how
much sunlight is gathered by the plant, we render the plant viewed from the position of the sun.
The area covered by the plant’s leaves is a measure of the plant’s ability to collect sunlight. If
a plant doesn’t spread its leaves properly, it gathers less sunlight than a plant which exposes all
of its leaves to the sun. Also, a plant can shadow itself. The amount of sunlight which hits the
leaves of the plant is used to calculate its fitness. We either evaluate each plant individually or
we evaluate all individuals of a population at the same time. When all individuals are evaluated
at the same time, then we also have an interaction between the individual plants of a population.
One plant may place its leaves above the leaves of another plant and thereby use up this sunlight
which would have otherwise been received by the plant below. We will see that coevolution shapes
the plants. If a highly successful plant reproduces more than once into the next generation, the
plant will have to compete with one or possibly more copies of itself. Plants grow higher and
higher in order to compete for virtual sunlight. If we look at the plant’s fitness over time, we will
see that although fitness is no longer rising, plants are still evolving. They are adapting to their
environment, which in this case is composed of other plants. An evolutionary arms race [7] sets in.
In contrast, if we evaluate each plant independently in a separate environment, evolution creates
bushy looking plants with increasing fitness.

The article is structured as follows. Evolution of artificial plants is described in section 2.
Calculation of plant fitness is described in section 3. The set of experiments is described in section
4 and section 5 ends with the conclusions.

2 Evolution of Artificial Plants

We have used deterministic, context-free L-systems as a representation for our plants. A context-
free L-system consists of an alphabet V', a starting word w and a set of rules P [39]. The starting
word is defined over the alphabet V: w € V. The rules are defined as a subset of V x V*. Each
rule (a,x) € P consists of a predecessor a and a successor x where y € V*. A single rule is also
written as @ — . If no successor is defined for a predecessor a, then we assume that a — a
belongs to the set of rules P.

The major difference between L-systems and the usual Chomsky grammar [6] is that in each
step all characters of a word are replaced at the same time. An L-system is basically a string
rewrite system where the letters of a word are transformed according to the set of rules. A new
word is derived from the initial word by replacing all letters of the word in parallel by their
successors. This process is repeated for a specified number of steps. This is supposed to model cell



Table 1: Interpretation of the symbols of our alphabet.

Symbol  Description

£ draw a branch segment and move forward
1 draw a leaf I

[ push transformation matrix onto the stack < 4x @E < 4X4>E

] pop transformation matrix from stack

> 22.5°rotation around X axis H H

< -22.5°rotation around X axis ZJ_%X ZJ_%X
\ 22.5°rotation around Y axis H H

/ -22.5°rotation around Y axis Zﬁx Zix
+ 22.5°rotation around Z axis H H

- -22.5°rotation around 7 axis ZPJ—X ZPJ—X

, ..., Z N0 operation

division of multi-cellular organisms [39]. For the experiments which are described below, we have
used 5 developmental steps. After a word has been derived from the starting word, we interpret
the letters as commands for a virtual drawing device in three-dimensional space. The symbols of
the resulting word are read from left to right.
We have used a relatively simple alphabet for our experiments. The alphabet consists of the
symbols:
V={f1,+-<>/,\,[,1,A ..., 2}

The interpretation of the individual letters is shown in Table 1. The letter £ produces a branch
segment. It draws a cylinder and moves the drawing device forward by a distance equal to the
length of the cylinder. The letter 1 draws a leaf at the current position. The position of the
drawing device does not change. All leaves of the plant have the same size and shape. Branch
segments and leaves are the building blocks from which the plant is created. Symbols +, -, <, >,
/, \ are used to change the orientation of the drawing device. The orientation can be changed
in discrete steps of 22.5 degrees in both directions around any of the three axis of the coordinate
system, e.g a bent branch segment is created by the sequence £+f. Symbols [ and ] can be used to
create branching structures. The symbol [ places the current state (e.g. position and orientation)
of the drawing device onto a stack. The symbol ] pops the topmost state from the stack, thereby
restoring the position and orientation of the drawing device to the one which was previously saved.
A Y-shaped branching structure is created by the sequence f [-f]+f. The symbols A through Z
cause no operation. They may be used during development to create substructures.

Each individual consists of one or more rules. The predecessor of the first rule is f, the
predecessor of the second rule is A, the predecessor of the third rule is B and so on. The initial
word from which the plant develops is £. Our initial population only contains individuals with
the single rule £ — £. That is, we start with a population of individuals which only consist of
a single branch segment. The fitness of all individuals of the initial population is zero because
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Figure 1: Sample grammar of an evolved plant. The plant was evolved on a flat landscape using
coevolution with a random placement of the offspring.
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Figure 2: Developmental process of two different plants.

a branch is not able to collect any sunlight. A typical L-system is shown in Figure 1. A fully
developed plant is obtained by applying the rules of the L-system five times to the initial word.
This developmental process is shown in Figure 2.

Plants are evolved using an algorithm similar to the genetic programming paradigm [27, 29].
Figure 3 shows the outline of the evolutionary algorithm. We start by briefly describing the steps
of this algorithm. First, the population is initialized and evaluated. All individuals of the first
generation are equivalent. They all consist of the single rule £ — f with the starting word f£. Each
plant has a specific position and orientation inside a two dimensional area. The initial position
of the individuals was chosen depending on the type of experiment. This is described in detail
below. To create a new individual for the next generation, we first choose a genetic operator.
Each operator is chosen with a specific probability. After the type of operator has been chosen, we
select one or two individuals depending on the type of operator. Crossover operators require two
individuals, mutation operators require only a single individual. Tournament selection is used to
select the parent individuals. This process does not depend on the spatial location of the plants.
Offspring are placed somewhere into the vicinity of their parents. Each genetic operator produces
either one or two offspring. The offspring are inserted into the next generation. New offspring
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Figure 3: Outline of evolutionary algorithm. First, the population is initialized and evaluated.
Each genetic operator is selected according to a specific
probability. Depending on the type of genetic operator, either one or two parent individuals are
selected. Next, the position of the offspring is determined and the selected genetic operator is
applied to actually create the offspring. The offspring is then inserted into the new generation.
New offspring are created until the population is filled. When the population is completely filled, it
is evaluated. The individuals are either evaluated independently or all individuals of the population
at the same time. New generations are created until the termination criterion is fulfilled. Finally,
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the best individual is the result of the algorithm.




Table 2: Genetic operators.

Operator Description

Permutation Two neighboring symbols of a random successor are exchanged. If a
bracket is chosen, then the successor is left unchanged.

Mutation A random character of a random successor is replaced with a new
symbol. Brackets cannot be mutated. If no mutable characters exist,
then no change is made to the individual.

Insertion A new symbol (excluding brackets) is inserted at a random locus of
a random successor.

Deletion A symbol is deleted at a random locus.

A rule is chosen at random and all rules following the selected rule
are exchanged between the two individuals.

A bracketed subtree is chosen at random in each individual.
subtrees are exchanged between the two individuals.

An empty branch is added to the individual. The new branch is
placed at a random position of the successor.

A bracketed subtree is deleted.

A new rule is appended to the individual, i.e. if the last ruleis C — x
then D — D is added.

The last rule of an individual is deleted.

One-Point-Crossover
Sub-Tree-Crossover Both

Add-Branch

Delete-Branch
Add-Rule

Delete-Rule

are created until the population is filled. Then the population is evaluated. The new population
replaces the old population. Thus, the algorithm is a generational algorithm. Note, that it would
be more realistic to use a steady state evolutionary algorithm where plant evolution is interleaved
with plant development. However, this would have extended the time which is required for the
experiments considerably.

Table 2 shows the list of genetic operators which were used for the experiments. Each operator
was applied with equal probability. The genetic operators were chosen such that parent and
offspring are quite similar. Thus, we only allow relatively small steps from parent to offspring.
We did not include operations such as the random generation of subtrees. Also, reproduction
was not included in this set. However, if we cannot apply an operator to a selected individual we
simply copy the individual into the next generation. For instance, it is not possible to do a subtree
crossover whenever one of the individuals does not contain a bracketed expression. In this case,
the parent individual is copied unchanged. Some operators change the structure of the rules by
rearranging the characters of the rule. Other operators may also change the number of rules used
by a single individual. Only the rules for the letters £ and A through Z may be changed during
the course of the experiment. Rules for symbols such as + cannot be added. These symbols have
the implied rule + — + which cannot be transformed.

3 Plant Evaluation

The fitness of a plant is computed from two components: (1) the plant’s ability to collect sunlight
and (2) the structural complexity of the plant. The first component is computed as follows. It is
assumed that the sun is directly above the plant. The plant’s ability to collect sunlight depends
on the size of leaf area exposed to the sun. We measure this area by rendering the plant using
OpenGL [37]. The plant is rendered as an image of size 512 x 512 using parallel projection. The
camera is placed above the plant. Thus, we render the plant from the sun’s viewpoint. Figure 4
shows such an image. The Z-buffer algorithm of OpenGL ensures that only visible parts of the
plant are drawn. A special color which is unique for each plant is used to draw the leaves. This



Figure 4: The first two images show the same plant viewed from two different positions. The
image on the right shows this plant viewed from above. Branch segments are drawn with black
and leaves are drawn with green. The number of green pixels in this image is a direct measure of
the plant’s ability to collect sunlight.

color is also different from the color used to draw the branch segment and also different from the
color of the ground. After rendering, we count the number of pixels which have this special color.
Since leaves are usually green, we will call this number the number of green pixels. This is a direct
measure of the area of the plant’s leaves which are exposed to the sun and thus of the plant’s
ability to collect sunlight.

For the first experiment, each individual was evaluated in isolation. The plant was always
placed in the center of the environment. For the remaining experiments, each plant has a specific
location inside the environment and we only render a single image with all of the individuals. We
call this mode of evaluation coevolution. All individuals of the population are evaluated in a single
environment. Some researchers use the term coevolution only if two distinct, non-interbreeding
populations are used while others do not make this distinction [30]. In our view, the defining
essence of coevolution is that the fitness of an individual not only depends on the genotype and
the environment, it also depends on the presence of other individuals.

When all individuals of a population are evaluated simultaneously, we use a unique color for
each plant to draw the plant’s leaves. Therefore, it is easy to determine how much sunlight a
plant receives. Figure 5 shows a population of 5 plants. The two images on the left show the
population of plants viewed from two different positions. The image on the right shows the image
which is used to evaluate the amount of light received per plant. Use of the Z-Buffer to estimate
the amount of sunlight hitting a plant was suggested by Benes [1].

We now address the second component, the structural complexity of the plant. Branch seg-
ments and leaves become more expensive to produce the further they are away from the root of
the plant. In our model, a branch segment costs 1 point and a leaf costs 3 points. This cost is
multiplied with a factor which takes the distance to the root of the plant into account. We define
the structural complexity of a plant as

complexity = Z COSthranch - factor" B () |- Z COStieat - factorneeht®)
beB leL

where B is the set of branches, L is the set of leaves and height returns the number of branch
segments between the current position and the root of the plant. The following parameters were
used: factor = 1.1. This gives us a cost increase of 10% per height level. The other parameters
were set at costpranch = 1 and costiear = 3. If the cost of a leaf is very low then the entire plant
will be covered with leaves. We experimented with different parameters and then settled for the
values presented here. The fitness of a plant is calculated by subtracting the structural complexity
from the amount of light received,

fitness = gain - pixels — complexity



Figure 5: The two images on the left show 5 different evolved plants. Large plants shadow smaller
plants. The image on the right was generated by rendering the plant population from the sun’s
viewpoint. Each plant has a unique color which is used to draw the plant’s leaves. The amount
of sunlight received per plant can be obtained easily by counting the number of leaf pixels which
belong to each plant.

where gain is a constant gain factor and pixels is the number of pixels covered by the plant’s leaves.
A single leaf oriented at a right angle not covered by anything else covers 196 pixels. In case of a
negative fitness we set fitness to zero. The number of green pixels is weighted with a gain factor
which was determined experimentally. For the experiments below it was set to 10. If we assume
that the number of green pixels is limited, then this factor determines the maximum complexity
which can be reached. If the first term is very small, only small plants with low complexity can
be created. On the other hand, if the first term is very large, plant complexity can become much
larger.

4 Experiments

A set of four experiments was performed. A complete list of parameters for these four experiments
is shown in Table 3. We experimented with a population of 200 individuals with tournament
selection and a tournament size of 7. All individuals of the first generation have a fitness of zero
because they all consist of the single rule £ — £ with the starting word £. The probability to apply
a particular genetic operator was set to 0.1. The first experiment took over 10 days to complete
500 generations. The other three experiments took between 3 and 4 days to complete. Therefore,
we only report on the results of single runs. The data is not averaged. Although we report only
the results for single runs, we observed similar results in earlier experiments [12].

For the first experiment, individuals are evaluated in isolation. In this case, the plant is
positioned in the center of a square landscape. This landscape was generated using Perlin noise
[38]. Leaves which are rendered outside of or below this landscape do not collect any sunlight.
The results of this experiment are shown in Figure 6. Plants quickly evolve into a bush-like shape.
Since a cost is assigned to each leaf and to each branch segment, it is not advantageous for the
plant to place part of its structure below the surface. Plants which don’t show this behavior are
fitter than the plants that do.

For the remaining three experiments, we have used coevolution. Each plant has a particular
position and orientation in space. Instead of evaluating the fitness of a plant one after the other,
with the plant placed in the middle of the environment, we evaluate all individuals of the population



Table 3: Parameters which were used for the experiments.

Experiment No. 1 2 3 4
Number of Generations 500 500 500 500
Size of Population 200 200 200 200
Method of Selection Tournament Tournament Tournament Tournament
Size of Tournament 7 7 7 7
Shape of Ground Flat Flat Sloped 2 Height Levels
factor 1.1 1.1 1.1 1.1
coSthranch 1.0 1.0 1.0 1.0
COStleaf 3.0 3.0 3.0 3.0
gain 10.0 10.0 10.0 10.0
Position of First Pop. Center  Around Center At Right Edge At Corner
Placement of Offspring Center Close to Parent Close to Parent Close to Parent
Coevolution no yes yes yes
PAdd-Rule 0.1 0.1 0.1 0.1
PDelete-Rule 0.1 0.1 0.1 0.1
PPermutation 0.1 0.1 0.1 0.1
PMutation 0.1 0.1 0.1 0.1
Pinsertion 0.1 0.1 0.1 0.1
PDeletion 0.1 0.1 0.1 0.1
POne-Point-Crossover 0.1 0.1 0.1 0.1
PSub-Tree-Crossover 0.1 0.1 0.1 0.1
PAdd-Branch 0.1 0.1 0.1 0.1
PDelete-Branch 0.1 0.1 0.1 0.1

at the same time. For this mode of evaluation we render a single image of the whole population
of plants. Each plant is assigned a unique color to draw the plant’s leaves. This allows us to
determine the amount of light received per plant. If a plant places its leaves above another plant’s
leaves then the one below does not receive as much sunlight as if it were evaluated in isolation.
In this case, the fitness of a plant also depends on the neighborhood it is growing in. Note, that
this type of coevolution is different from the usual setup where two different populations are used,
e.g. in a predator prey scenario. We work with a single population where an individual of the
population has to compete with all other individuals of the same population.

Since each plant has a position and orientation in space, we need a method to determine where
a plant’s offspring will be placed. The position and orientation of the individuals in the first
generation was chosen such that all individuals are located in a random position inside a small
circular area of the environment. Orientation was set randomly. When an offspring is created, it
is always placed in the vicinity of the parent. This is done by rendering the plant viewed from
above. The plant’s offspring is then placed on a random location of the plant’s footprint (Figure
7).

Three different landscapes were used: a flat landscape as in the first experiment, a landscape
which has a large vertical slope and a landscape with two different height levels. Again, Perlin
noise was used to provide small scale variations of the landscape. Results are shown in Figure
8, 9, and 10. The first graph shows maximum and average fitness over time. The second graph
shows the number of green pixels, the third graph shows plant complexity for the best plant of each
generation. The images below the graphs show snapshots of the population for different generations
of the evolutionary algorithm. For the experiment on the flat landscape, individuals of the first
generation were placed in the center of the environment. From there, the population quickly
spread and eventually populated the whole environment. For the sloped landscape, individuals
were originally placed on the right side of the environment. Again, individuals quickly spread and
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Figure 6: Experiment 1: Isolated evaluation. The first graph shows maximum and average fitness
over time. The second graph shows how the first fitness component (number of green pixels)
changes over time. The third graph shows the second fitness component (plant complexity). The
images below show the best individual from generation 0, 50, 75, 100, 150, 200, 250, 300, 350, 400,
450, and 500.

populated the available area. For the landscape with two height levels, we placed the individuals
in a small area located at the front right corner. Again the population spread and populated both
height levels.

The first experiment resulted in bush-like plants. Here, a single plant is most successful if
it covers all of the available space while minimizing its structural complexity. It does not pay
for the plant to grow very high as this adds to the plant’s complexity. This is different for the
other three experiments. Here, plants face competition from other individuals. This leads to an
arms race where plants grow higher and higher in an attempt to gain more sunlight. Thin and
tall plants dominate. Plants effectively try to maximize the number of green pixels, i.e. their
ability to gather sunlight. By increasing the number of green pixels, the structural complexity
may also be increased without reducing the fitness to zero. If all plants are evaluated inside the
same environment, the competition for sunlight results in increasingly larger and larger plants.
A comparison of the best plants which were evolved during experiments 1 through 4 is shown in
Figure 11.

If we look at maximum fitness, we see that fitness starts to fluctuate around a constant level
very early during the run (approximately at generation 50). However, at this point the evolutionary
process has not come to a halt yet. Plants are still evolving. They adapt their shapes to their
environment. The structural complexity and the height of the plants is still increasing. Figure
12 shows the height of the best plant for each generation. We can see that apart from the first
experiment, plant height increases even though plant height increases the structural complexity
and therefore has a negative impact on fitness. Note that the maximum height of the plants was
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Figure 7: The image on the right shows the footprint of the plant which is shown on the left. This
image was generated by rendering the plant from the sun’s viewpoint. All plant components are
drawn in black. Offspring may be placed anywhere on the footprint of the plant. Whenever an
offspring is generated, one of the possible locations is chosen at random.

not limited explicitly. However, the number of green pixels per plant is fixed when distributed
evenly among all plants. Eventually, plants evolve to the point where no further increase in
structural complexity is advantageous. Structural complexity cannot become larger than the first
term of the fitness function which depends on the number of green pixels. This also limits the
maximum height attainable by the plants.

A number of researchers have investigated how evolutionary progress can be measured [3, 30].
Some have suggested adding an external memory of individuals to guarantee progress [14, 23].
Cliff and Miller [3] suggested to perform tests between the best individual of the current genera-
tion and the best individual of all previous generations. The result of these tests is entered into
a CTAO (Current Individual vs. Ancestral Opponents) graph. Floreano and Nolfi [15] suggested
to perform a master tournament where the best individual of each generation is compared to the
best individual of all other generations. Stanley and Miikkulainen [48] suggested the dominance
tournament method to monitor progress in coevolutionary experiments. The dominance tourna-
ment method is used here as the number of evaluations is considerably lower when compared to
the other methods. The dominance tournament builds a list of dominant strategies. A domi-
nant strategy is a strategy which defeats all previous dominant strategies. The first dominant
strategy is the best individual from the first generation. A dominant strategy is added whenever
it beats all other dominant strategies which have been found so far. We determine if strategy
A beats strategy B by filling half of the population with individuals using strategy A and the
second half of the population with individuals using strategy B. The individuals of the population
are distributed randomly throughout the environment. The entire population is then evaluated
and average fitness of strategies A and B are computed. Strategy B beats strategy A if average
fitness of B is significantly higher (at the 1% level). Figure 13, Figure 14 and Figure 15 show the
dominant individuals for experiments 2 through 4.

Let’s have a theoretical look on the possible outcomes of this experiment. Stenseth and May-
nard Smith [49] note that an ecosystem in a physically constant environment may be in one of two
states: (1) a steady state of evolutionary change or (2) evolutionary stasis. If we take the available
area (number of pixels in the image) and divide it by the number of plants in the population, we
obtain the maximum number of green pixels per plant which can be covered. Let this number be
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Figure 8: Experiment 2: Coevolution in a flat environment. In contrast to experiment 1 the indi-
viduals of a population are all evaluated at the same time. Initially, the population is concentrated
in a small area in the middle of the environment. The plants soon spread to populate the whole
area. From this point onwards an arms race sets in. The images show the population at generation
0,4,6,7,8,9, 10, 14, 50, 100, 250, and 500. Note that the plants still evolve after generation 50.
Apart from the oscillations, maximum fitness stays largely constant during the remainder of the
experiment.

total number of pixels

number of individuals in population

Covering m pixels on average with a minimal structural complexity is the evolutionary stable
strategy for this type of experiment. An evolutionary stable strategy is a strategy which is defined
as follows [47]. Let A and B be two different strategies and let E4(B) be the expected payoff
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Figure 9: Experiment 3: Coevolution in a sloped environment. The setup is similar to experiment
2 except that a sloped environment was used and the population is initially placed at the right
side of the environment. The images show the population at generation 0, 4, 6, 7, 8, 9, 10, 14,
50, 100, 250, and 500. Again, plants still evolve after generation 50. However, maximum fitness
decreases after generation 50.

to B when matched against A. The strategy A is an evolutionary stable strategy if for all other
strategies B, E4(A) > E4(B), i.e. A isthe best strategy when matched against any other strategy.
If for any strategy B, F4(A) = E4(B), i.e. there is some other strategy that does equally well
against strategy A, then it is required that Ep(A) > Ep(B), for A to be an evolutionary stable
strategy. In other words, once strategy A occurs in the population, no other strategy can overtake
the population.
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Figure 10: Experiment 4: Coevolution in an environment with two different height levels. The
populations is initially placed inside a small area in the lower right corner. Over time, it populates
both height levels. The images show the population at generation 0, 4, 7, 8, 9, 10, 11, 15, 50, 100,
250, and 500. The population spreads from a small area in the lower right corner and eventually
populates the whole area. Again, we see that evolution still continues after the first peak at around
generation 75.

Also see Rosenzweig et al. [46] for an in depth discussion of the Red Queen effect and evo-
lutionary stable strategies. Rosenzweig et al. note that the Red Queen effect appears if there
exists traits which are unbounded and which are best at their most extreme values. If traits are
constrained or correlated with other traits an evolutionary stable strategy emerges. This is exactly
the behavior seen in the experiments we conducted. We first see the Red Queen effect until plant
complexity has reached the maximum value which is implicitly set by the total available area and
the number of plants in the population.
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Figure 11: Plants evolved using coevolution grew higher and are thinner in comparison to plants
which were evaluated in isolation. The image on the top left shows the best plant when plants were
evaluated in isolation. The other three images show plants which were evolved using coevolution.
The second plant was evolved with a flat environment, the third one with a sloped environment
and the third one with an environment with two height levels. The evolved L-system is shown
below each image.
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Figure 12: Plant height of the best plant for each generation of the four experiment. Isolated
evaluation lead to comparatively small plants. For the other three experiments, coevolution was
used. Even though fitness remained constant and sometimes even decreased, plant height was
increasing over time.

Figure 13: Result of dominance tournament for experiment 2. The number below each plant
indicates the generation at which this dominant individual was found.

17



Figure 14: Result of dominance tournament for experiment 3.
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Figure 15: Result of dominance tournament for experiment 4. The phenotypes of individuals from
generation 365 and 367 are actually identical.

If a new mutation causes a plant to grow very high and wide while the remainder of the
population is still small, such that it covers more than m pixels, then this plant will reproduce quite
often. This plant will then have to compete with multiple copies of itself in the next generation.
Since the orientation of the plants is random, eventually, only m pixels will be covered. This sets
the scene for other plants which also cover m pixels but don’t grow as wide, i.e. they have a
smaller structural complexity. So, on average only m pixels will be covered and plant width will
be limited due to the structural complexity factor. Plant height is initially unlimited. However,
since maximum number of green pixels per plant is limited, it also limits the maximum height
of the plants. Therefore, eventually an evolutionary stable strategy will be reached. A similar
situation is reached in other arms races, e.g. the population of cheetahs and gazelles. Maximum
speed cannot increase indefinitely due to physical constraints.

18



5 Conclusion

A population of individuals may also adapt to its environment even if fitness remains constant.
We have shown this Red Queen effect for a population of artifical plants. Maximum fitness of
the population fluctuates around a constant level and sometimes even decreases, yet the plants
adapt to their environment. We have modeled the plants using Lindenmayer systems. OpenGL
was used to render the plants. The plants have to collect virtual sunlight through their leaves
in order to reproduce. Fitness is calculated as the amount of sunlight received minus the cost
for creating the plant. Plants were evaluated either individually or using coevolution. During
coevolution we evaluated all plants at the same time. The fitness of a plant depends on its ability
to collect sunlight as well as on the neighborhood it is growing in. Thus, we have realized an
interaction between the plant and its environment which in this case consists of other individuals.
If an offspring is generated, it is placed in the vicinity of the plant. The possible locations for the
offspring are determined by the plant’s footprint. If a highly successful plant creates two or more
offspring, then these offspring compete against each other.

The Red Queen effect was visualized for three different environments, an essentially flat land-
scape, a landscape with a large slope and a landscape with two height levels. The original popula-
tion of plants was placed in a small area. From this area, plants quickly spread over the available
space. After the environment was populated, an arms race set in. The data shows that during co-
evolution, even though fitness stays constant or decreases, progress is being made. Plants evolved
during coevolution keep increasing their structural complexity in order to catch more light than
a neighboring plant. Even though structural complexity has a negative impact on fitness, plants
grew higher and higher in an attempt to collect more sunlight than their competitors. Plants which
were evaluated in isolation are short and look bush-like whereas plants which were evaluated using
coevolution look tree-like. Thus, coevolution and the Red Queen effect shaped the virtual plants.

In the end, however, the plants also evolved to an evolutionary stable strategy with no further
progress. So the main issue still remains unsolved. How do we create an environment which allows
true open ended evolution? It may also be of interest if an environment can be found which leads
to a speciation of the plants, i.e. to have one set of plants located in one area and a different set
of plants located in another area. Another possible extension would be to see what happens if the
developmental and the evolutionary process are interleaved.

In our research we have shown the Red Queen effect in a population of coevolving plants. With
a better understanding of the Red Queen effect we may be able to achieve open ended evolution
which is capable of continued innovation.
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