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Abstract Experimental results with a three-dimensional environment
for self-reproducing programs are presented. The environment consists
of a cube of virtual CPUs each capable of running a single process. Each
process has access to the memory of 7 CPUs, to its own as well as to the
memory of 6 neighboring CPUs. Each CPU has a particular orientation
which may be changed using special opcodes of the machine language.
An additional opcode may be used to move the CPU. We have used a
standard machine language with two operands. Constants are coded in
a separate section of each command and a special mutation operator
is used to ensure strong causality. This type of environment sets itself
apart from other types of environments in the use of redundant mappings.
Individuals have read as well as write access to neighboring CPUs and
reproduce by copying their genetic material. They need to move through
space in order to spawn new individuals and avoid overwriting their
own offspring. After a short time all CPUs are filled by self-reproducing
individuals and competition between individuals sets in which results in
an increased rate of speciation.

1 Introduction

Evolution of computer programs, Genetic Programming [17,18,2], is usually a
very difficult task because small changes to the program’s code are often lethal.
Changing a single byte in any large application program is very likely to cause
such a severe error that the mutated program no longer performs its intended
function. This violates the principle of strong causality [31] which states that
small changes to the genotype should have a small effect on the phenotype. In
essence, we do not want an entirely random fitness landscape.

Nature’s search space is highly redundant [15]. This redundancy is caused
in part by a redundancy in the genetic code. In addition, different phenotypes
may perform the same function (e.g. different sequences code for the same shape
and are able to perform the same enzymatic function because local shape space
is only finite). Redundant mappings induce so called neutral networks [14,37].
Neutral networks are genotypes mapping to the same phenotype which are con-
nected via point mutations. It has been argued (see Ebner [9] and Shipman [33])



that mappings with similar characteristics like nature’s search space should also
be beneficial for an artificial search technique, i.e. a genetic algorithm [13,11,20].
Redundant mappings for artificial evolution were investigated by Shipman et al.
[34] and Shackleton et al. [32]. We have shown previously that redundant map-
pings which possess highly intertwined neutral networks increases the evolvabil-
ity of a population of bit strings [10]. The extent of the neutral networks affects
the interconnectivity of the search space and thereby affects evolvability.

In this paper we propose the use of highly redundant mappings for self-
reproducing programs. The redundancy in the genotype-phenotype mapping cre-
ates the same robustness as it is present in the genetic code. A single exchange of
a base-pair in a DNA sequence does not necessarily result in a different sequence
of amino acids because the mapping from codon to amino acid is redundant.
Therefore, many mutations in our environment are neutral. According to the
neutral theory of evolution [16] a large fraction of all mutations in nature are
neutral and only a small fraction of the mutations that actually have an effect on
the phenotype are beneficial. If the same mechanism is introduced into artificial
evolution robustness of programs is increased. A single mutation is no longer
lethal for the individual.

We have devised a virtual environment for self-reproducing programs which
uses redundant mappings to decode its machine language. Instead of using a
highly simplified machine language (such as the Tierran language by Ray [27]
which does not use operands), we are using a rather complex machine language
were the opcode and two operands are stored in successive memory locations.
Constants are also used in our machine language. We integrated them into the
instructions and changed the mutation operator instead such that strong causal-
ity is preserved. It has been argued that the commands in the Tierra language
are like the the amino acids which are used by nature to construct a protein out
of the DNA sequence [27]. During a two stage process called transcription and
translation, the sequence of base pairs on the DNA are converted into a string
of amino acids which fold into a protein. Different protein can fulfill different
functions. It is the three-dimensional structure of a protein which is responsible
for producing a particular function. In nature, different types of protein may per-
form the same function if they have the same local structure. Therefore, instead
of equating instructions of an assembly language with amino acids we equate in-
structions with proteins and our processes with cells. Analogies between natural
and artificial life are discussed by Davidge [3].

2 The virtual environment

Several types of virtual environments for self-replicating programs have already
been developed (e.g. Core War [4,5,6,7], Coreworld [24], Luna [23], the Computer
Zoo [36], Tierra [26,25,27,28], Network Tierra [29,30], Avida [1] or CoreSys [8]).
Spontaneous emergence of self-replication has been investigated by Koza [18]
and Pargellis [22,21]. An overview about artificial self-replicating structures is
given by Sipper [35]. Our environment consists of a cube of processors. At any



Figure 1. Neighborhood of CPU. Figure 2. Change of orientation.
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Figure 3. 8 byte structure of a single instruction.

point in time at most one process may be running on a CPU. Thus, each CPU
can carry at most one individual. The instructions of each individual are stored
inside the CPU’s memory. Each CPU has 5 registers, a stack with 10 elements, a
stack pointer marking the top of the stack, a program counter, a zero flag and a
memory of 256 bytes. The registers may be used to hold data as well as to access
memory. Each register consist of two parts. The first part specifies a neighboring
CPU. The second part specifies an address within the CPU. If an individual tries
to access a non-existing address we perform a modulo operation on this register.
The neighborhood relation is shown in Figure 1. Each CPU has access to the
address space of the CPUs on the left, right, in front of, behind as well as above
and below its own CPU. Which CPUs are accessed by a command is determined
by the orientation of the CPU. The orientation of each CPU is initially set
randomly and may be changed by executing special commands during the run
as shown in Figure 2.

We have used a two-address instruction format [19,12]. The list of opcodes
is shown in Table 1. The result replaces the value of the second operand. The
structure of the machine language is shown in Figure 3. Each command consists
of 8 bytes. The first two bytes code for the opcode of the command. Bytes
three and four code for the addressing mode of the first operand. Bytes five
and six code for the addressing mode of the second operand. Constants are
stored in bytes seven and eight. A redundant mapping is used to decode the 2
opcode bytes. Thus, different byte combinations may code for the same opcode.
Opcodes are assigned randomly to the different byte combinations. Additional
redundant mappings are used to decode the addressing modes of the first and



Table 1. List of opcodes. A “-” in the column for operand 1 or 2 indicates that the
opcode does not use this operand. “A” denotes the addressing modes: register indirect,
register indirect with auto-increment, register indirect with auto-decrement, and bind.
“R” denotes the register addressing mode. “C” denotes the direct addressing mode,
and “N” denotes the neighbor addressing mode.

opcode| operand 1 | operand 2 |name of operation

nop - - no operation

lea A, N R load effective address

move |C, R, A R, A move operand 1 to operand 2

clr - R, A set operand to zero

inc - R, A increment operand by one

dec - R, A decrement operand by one

add C, R, A R, A add operand 1 to operand 2

sub C, R, A R, A subtract operand 1 from operand 2
neg - R, A negate operand

not - R, A negate bits

and C, R, A R, A and operand 1 with operand 2

or C, R, A R, A or operand 1 with operand 2

xor C, R, A R, A xor operand 1 with operand 2

shl - R, A shift operand left

shr - R, A shift operand right

cmp C, R, A R, A compare operand 1 with operand 2
beq - A branch on equal (zero flag set)

bne - A branch on not equal (zero flag not set)
jmp - A jump

jsr - A jump to subroutine

rts - A return from subroutine

pop - R, A pop from stack

push |C, R, A - push operand to stack

spawn - A spawn new process

kill - R, N [kill CPU

turnl - - turn CPU left

turnr - - turn CPU right

turnu - - turn CPU up

turnd - - turn CPU down

fwd - - move CPU forward

label - - marker used for relative addressing

second operand. Because the number of allowed addressing modes can differ for
each operator we have used separate mappings to decode the operands for each
operator. A standard binary mapping is used to decode the constants.

The following addressing modes are available: direct (e.g. move #1,r0),
register (e.g. move r1,r0), register indirect (e.g. move (r1),r0), register in-
direct with auto-increment (e.g. move (r1)+,r0), register indirect with auto-
decrement (e.g. move -(r1),r0), bind (e.g. lea <start>,r0), and neighbor
(e.g. lea [1ft],r0). Depending on the type of command only a subset of all
addressing modes can be used. The allowed addressing modes for each command
are shown in Table 1. The addressing modes have the usual meaning except for
the bind and neighbor addressing modes. Neighbor is used to refer to a neigh-
boring CPU. The bind addressing mode may be used to access memory. This
is an addressing mode which is similar to the complementary labels which are
used in the Tierran assembly language. In our assembly language, labels may
be compiled using the label opcode. Each label is assigned a unique constant.
This constant is stored in byte 8 of the machine code. If the instruction pointer
executes the label opcode nothing happens. The bind addressing mode may be
used to search for a particular label inside its own or neighboring CPUs. The



label with the best match is returned as the resulting address. Special opcodes
have been added to change the orientation of a CPU. A CPU may change its
orientation by turning to the left (turnl), right (turnr), up (turnu) or down
(turnd). A process is also able to move through the environment by execut-
ing the fwd command. This command swaps the specified CPU with the CPU
which executed the command. Swapping as opposed to simply copying or copy-
ing and erasing the original has been used in order to preserve the contents of
the destination CPU.

A command to allocate memory is not included in the instruction set. Other
virtual environment for self-reproducing individuals (e.g. Tierra [27] and Avida
[1]) include such an instruction. This instruction must be called by each indi-
vidual which wants to reproduce itself. In our environment there is no need to
allocate memory because individuals have read as well as write access to neigh-
boring CPUs. Individuals reproduce themselves by copying their genotype to
an adjacent CPU and setting the program counter to the start of the program.
Each process is only allowed to execute a limited amount of steps. Thus, it has
to reproduce its genetic material before its lifetime is over. In order to avoid
periodic effects of the evaluation method we evaluated CPUs at random. On
average all CPUs are evaluated for the same number of steps.

3 Reproduction, variation and selection

Individuals reproduce by copying their genetic material to a neighboring CPU
and setting the instruction pointer appropriately. In order for evolution to oc-
cur, we also need a source of variation and selection. Selection of individuals
occurs for three reasons. First, the lifetime of each individual is limited. Each
individual may only execute a fixed number of steps before its CPU stops exe-
cuting instructions. Second, an individual has the possibility of killing another
individual and third, space is finite. Several methods to kill another individual
exist. An individual may use the kill instruction, reset the instruction pointer
using the spawn instruction or simply overwrite the memory of its opponent.
Thus, individuals have to protect themselves against other individuals in order
to survive. Selection occurs naturally.

In order for evolution to occur, we also need some source of variation. Each
memory location is mutated with probability pcosmic- One may equate this type
of variation with cosmic rays randomly hitting bytes in memory. If an opcode is
to be mutated we simply choose two new bytes for the opcode. The mutations
hitting the addressing mode are handled in the same way. Because redundant
mappings are used to decode the operands as well as the addressing modes the
mutation does not necessarily create a new phenotype. In order to ensure strong
causality random mutations of constants are handled differently. If a cosmic mu-
tation hits a constant (bytes 7 or 8 of our machine language) we simply increment
or decrement the constant. Thus our environment differs from existing environ-
ments in that we use a non-uniform mutation operator. It is highly important
that strong causality is preserved. Otherwise we would essentially be performing



a random search in the space of self-replicating individuals. Ray has carefully
constructed an instruction set with high evolvability by removing all operands
[27]. Because we are free to specify the physics of our virtual environment one
may as well change the mutation operator which is the option we have chosen
for our environment.

Another source of variation results from errors which occur when determin-
ing a memory address. The address is either decreased or increased by 1 with
probability paqqr- Bytes read from memory are decreased or increased by 1 with
probability preaq. Bytes written to memory are decreased or increased by 1 with
probability pyrite- Thus, an offspring may be different from its parent because of
addressing errors, read errors or write errors. In addition, with probability pspigt
we randomly shift a memory section 8 bytes up or down after a spawn occurred.
This causes one command to be removed and one command to be doubled. The
command which was doubled is either left untouched, replaced with a NOP or
replaced with a random command. The shift operation allows the self-replication
programs to grow or shrink in size if necessary.

As the memory fills with self-reproducing individuals, selection sets in. Only
those individuals which successfully defend themselves against other individu-
als will be able to replicate. Short individuals will have an advantage because
they are able to reproduce quickly. Another strategy is to develop an elaborate
defense mechanism and thereby ensure that the replication will succeed. This
might even entail creating signals or tags to make sure that an older individual
doesn’t destroy its newly created offspring. In principle, it may be possible for
the individuals to distinguish their own species from different species by looking
at their genotype or inventing special tag bytes. In addition, crossover can de-
velop naturally because at any point in time several individuals may be copying
their genetic material into the memory of the same CPU.

4 Experimental results

Results are described for an environment consisting of a cube of 10 x 10 x 10
CPUs. The probabilities pcosmic, Pread, Pwrites Paddr, and pehire have been set to
1075, 10=%, 1074, 1073, and 0.5 respectively. These probabilities were chosen
such that the different mutations occur approximately equally often per repro-
duction. Each CPU has 256 bytes of memory. We filled the memory of all CPUs
with NOPs and loaded a manually coded self-reproducing individual into a sin-
gle CPU. The source code of this individual is shown in Figure 4. The individual
first moves one step forward, turns to the left and then up. Next, it determines
the beginning and the end of the program and copies its genotype back to front
to the CPU on its left side. We performed a number of runs. However, results
are only shown for a single run. Thus, the reader may see what actually happens
during the run.

Initially, most CPUs are empty and can be used by the individual and its
offspring to replicate themselves. Soon, almost all available CPUs are filled.
Now individuals have to compete for CPUs. We have analyzed how the original



Addr  Bytes Source Code Comment

0008 FB3C 152C 1096 9E2C  fwd ; go forward

0010 B609 10CF 621A D479  turnl turn left
0018 C3C6 CED4 1EB5 5048  turnu turn up

0020 E5D3 3DC5 EAOD 0083 1lea <00>,R0O get beginning
0028 E25E F50F 5332 AA15  lea <AA>,R1 get end

0030 0701 5D91 EF8C 08C9  add #08,R1
0038 663B E709 F66B 459E move R1,R2

0040 1B57 A934 F25B B35D lea [1ft],R2
0048 87F9 188E 899E CC65  label <55>

0050 FCC8 4552 E39D 7DC2 move -(R1),-(R2)
0058 B8D6 D016 102A EB77  cmp R2,R0O

0060 51B3 14F3 1302 1455  bne <65>

0068 4322 2624 D15A 3A59 spawn (R2)

0070 DA32 5909 EB54 ABOO  jmp <00>

0078 8090 2B1D EBA6 61AA  label <AA>

add 8 bytes for label
copy contents of reg.
set cpu pointer

copy one byte
check if done
copy next byte
spawn new process
repeat

Figure 4. Self-reproducing program. The program copies itself back to front to the
CPU on its left side. After all bytes are copied the program spawns a new process. The
source code of the program is shown on the right, the assembled bytes on the left. The
first column shows the memory addresses.
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Figure 5. Relation between speciation and number of active CPUs.

individual speciates. An offspring and its parent are considered to belong to the
same species if the offspring contains all of the bytes which were executed by its
parent. A comparison between speciation and number of active CPUs is shown
in Figure 5. The graph on the left shows how the total number of individuals
and the total number of species increases over time. The number of active CPUs
is also shown. One can clearly see that speciation happens at a faster rate if the
number of active CPUs is high. The more active CPUs the higher the speciation
rate. Thus, the co-evolutionary environment aids speciation in that due to the
presence of other individuals the mutations accumulate in the offspring. All
individuals try to replicate themselves, but only if there are a number of active
CPUs in the neighborhood, mutations start to accumulate and new species are
created. How the number of active CPUs changes during the run can be seen
on the graph on the right. The number of individuals which have successfully
created an offspring (viable individuals) are also shown in the same graph.
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Figure 6. Size, gestation time and diversity of self-reproducing programs.

The average size of viable individuals is shown in Figure 6. Also shown in
Figure 6 is the size of the three most dominant species, the average gestation
time and the diversity of the population. We define gestation time as the number
of steps executed over the total number of offspring. Simpson’s index is used to
calculate diversity. We group individuals into species depending on their size. The
graph shows Simpson’s index scaled with the factor 256/255 because individuals
may reach a maximum size of 256 bytes.

5 Conclusion

Experiments with a three-dimensional environment of self-replicating computer
programs are reported. The environment consists of a cube of CPUs. Each CPU
may be running at most one individual. Individuals have read as well as write
access to the memory of neighboring CPUs. They replicate by copying their
instruction to a neighboring CPU and setting the instruction pointer appropri-
ately. Individuals need to move in order to find new CPUs which may be used
for replication. Speciation sets in after all CPUs have been filled and individuals
need to compete in order to use CPUs for replication. Thus, selection comes
about naturally in our environment.

Instead of using a highly simplified instruction set, we have chosen to exper-
iment with a high level machine language. Redundant mappings have been used
in order to increase evolvability. We have shown that artificial evolution can also
be carried out in a complex assembly language. In addition we have used a mu-
tation operator which takes the structure of the machine language into account
to ensure strong causality. This type of environment aids speciation and leads
to a highly diverse population of individuals. In future experiments we plan to



investigate the impact of different redundant mappings on the evolvability of the
population. A more detailed investigation of the evolutionary dynamics would
also be interesting, i.e. do we get a similar diverse ecosystem with parasites and
the like as in Tierra?
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